| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > joinlmuladdmuld | GIF version | ||
| Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
| Ref | Expression |
|---|---|
| joinlmuladdmuld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| joinlmuladdmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| joinlmuladdmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| joinlmuladdmuld.4 | ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
| Ref | Expression |
|---|---|
| joinlmuladdmuld | ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinlmuladdmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | joinlmuladdmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | joinlmuladdmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 1, 2, 3 | adddird 8097 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵))) |
| 5 | joinlmuladdmuld.4 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) | |
| 6 | 4, 5 | eqtrd 2237 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 + caddc 7927 · cmul 7929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-addcl 8020 ax-mulcom 8025 ax-distr 8028 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 |
| This theorem is referenced by: div4p1lem1div2 9290 arisum 11751 tangtx 15252 binom4 15393 |
| Copyright terms: Public domain | W3C validator |