![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > joinlmuladdmuld | GIF version |
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
Ref | Expression |
---|---|
joinlmuladdmuld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
joinlmuladdmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
joinlmuladdmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
joinlmuladdmuld.4 | ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
Ref | Expression |
---|---|
joinlmuladdmuld | ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmuladdmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | joinlmuladdmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
3 | joinlmuladdmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 1, 2, 3 | adddird 8045 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵))) |
5 | joinlmuladdmuld.4 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) | |
6 | 4, 5 | eqtrd 2226 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 · cmul 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-addcl 7968 ax-mulcom 7973 ax-distr 7976 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: div4p1lem1div2 9236 arisum 11641 tangtx 14973 binom4 15111 |
Copyright terms: Public domain | W3C validator |