ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddirp1d Unicode version

Theorem adddirp1d 8048
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
adddirp1d.a  |-  ( ph  ->  A  e.  CC )
adddirp1d.b  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
adddirp1d  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  B ) )

Proof of Theorem adddirp1d
StepHypRef Expression
1 adddirp1d.a . . 3  |-  ( ph  ->  A  e.  CC )
2 1cnd 8037 . . 3  |-  ( ph  ->  1  e.  CC )
3 adddirp1d.b . . 3  |-  ( ph  ->  B  e.  CC )
41, 2, 3adddird 8047 . 2  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  ( 1  x.  B ) ) )
53mulid2d 8040 . . 3  |-  ( ph  ->  ( 1  x.  B
)  =  B )
65oveq2d 5935 . 2  |-  ( ph  ->  ( ( A  x.  B )  +  ( 1  x.  B ) )  =  ( ( A  x.  B )  +  B ) )
74, 6eqtrd 2226 1  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872   1c1 7875    + caddc 7877    x. cmul 7879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-mulcl 7972  ax-mulcom 7975  ax-mulass 7977  ax-distr 7978  ax-1rid 7981  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922
This theorem is referenced by:  modqvalp1  10417  hashxp  10900  fsumconst  11600  divalglemnqt  12064  pcexp  12450  mulgnnass  13230  cnfldmulg  14075  2lgsoddprmlem3d  15267
  Copyright terms: Public domain W3C validator