| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddirp1d | Unicode version | ||
| Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| adddirp1d.a |
|
| adddirp1d.b |
|
| Ref | Expression |
|---|---|
| adddirp1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adddirp1d.a |
. . 3
| |
| 2 | 1cnd 8158 |
. . 3
| |
| 3 | adddirp1d.b |
. . 3
| |
| 4 | 1, 2, 3 | adddird 8168 |
. 2
|
| 5 | 3 | mulid2d 8161 |
. . 3
|
| 6 | 5 | oveq2d 6016 |
. 2
|
| 7 | 4, 6 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-mulcom 8096 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: modqvalp1 10560 hashxp 11043 fsumconst 11960 divalglemnqt 12426 pcexp 12827 mulgnnass 13689 cnfldmulg 14534 2lgsoddprmlem3d 15783 |
| Copyright terms: Public domain | W3C validator |