ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddirp1d Unicode version

Theorem adddirp1d 7804
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
adddirp1d.a  |-  ( ph  ->  A  e.  CC )
adddirp1d.b  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
adddirp1d  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  B ) )

Proof of Theorem adddirp1d
StepHypRef Expression
1 adddirp1d.a . . 3  |-  ( ph  ->  A  e.  CC )
2 1cnd 7794 . . 3  |-  ( ph  ->  1  e.  CC )
3 adddirp1d.b . . 3  |-  ( ph  ->  B  e.  CC )
41, 2, 3adddird 7803 . 2  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  ( 1  x.  B ) ) )
53mulid2d 7796 . . 3  |-  ( ph  ->  ( 1  x.  B
)  =  B )
65oveq2d 5790 . 2  |-  ( ph  ->  ( ( A  x.  B )  +  ( 1  x.  B ) )  =  ( ( A  x.  B )  +  B ) )
74, 6eqtrd 2172 1  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7630   1c1 7633    + caddc 7635    x. cmul 7637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-resscn 7724  ax-1cn 7725  ax-icn 7727  ax-addcl 7728  ax-mulcl 7730  ax-mulcom 7733  ax-mulass 7735  ax-distr 7736  ax-1rid 7739  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  modqvalp1  10128  hashxp  10584  fsumconst  11235  divalglemnqt  11628
  Copyright terms: Public domain W3C validator