ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddirp1d Unicode version

Theorem adddirp1d 8134
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
adddirp1d.a  |-  ( ph  ->  A  e.  CC )
adddirp1d.b  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
adddirp1d  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  B ) )

Proof of Theorem adddirp1d
StepHypRef Expression
1 adddirp1d.a . . 3  |-  ( ph  ->  A  e.  CC )
2 1cnd 8123 . . 3  |-  ( ph  ->  1  e.  CC )
3 adddirp1d.b . . 3  |-  ( ph  ->  B  e.  CC )
41, 2, 3adddird 8133 . 2  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  ( 1  x.  B ) ) )
53mulid2d 8126 . . 3  |-  ( ph  ->  ( 1  x.  B
)  =  B )
65oveq2d 5983 . 2  |-  ( ph  ->  ( ( A  x.  B )  +  ( 1  x.  B ) )  =  ( ( A  x.  B )  +  B ) )
74, 6eqtrd 2240 1  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    x. cmul 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-mulcl 8058  ax-mulcom 8061  ax-mulass 8063  ax-distr 8064  ax-1rid 8067  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  modqvalp1  10525  hashxp  11008  fsumconst  11880  divalglemnqt  12346  pcexp  12747  mulgnnass  13608  cnfldmulg  14453  2lgsoddprmlem3d  15702
  Copyright terms: Public domain W3C validator