ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddirp1d Unicode version

Theorem adddirp1d 8053
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
adddirp1d.a  |-  ( ph  ->  A  e.  CC )
adddirp1d.b  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
adddirp1d  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  B ) )

Proof of Theorem adddirp1d
StepHypRef Expression
1 adddirp1d.a . . 3  |-  ( ph  ->  A  e.  CC )
2 1cnd 8042 . . 3  |-  ( ph  ->  1  e.  CC )
3 adddirp1d.b . . 3  |-  ( ph  ->  B  e.  CC )
41, 2, 3adddird 8052 . 2  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  ( 1  x.  B ) ) )
53mulid2d 8045 . . 3  |-  ( ph  ->  ( 1  x.  B
)  =  B )
65oveq2d 5938 . 2  |-  ( ph  ->  ( ( A  x.  B )  +  ( 1  x.  B ) )  =  ( ( A  x.  B )  +  B ) )
74, 6eqtrd 2229 1  |-  ( ph  ->  ( ( A  + 
1 )  x.  B
)  =  ( ( A  x.  B )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877   1c1 7880    + caddc 7882    x. cmul 7884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-mulcl 7977  ax-mulcom 7980  ax-mulass 7982  ax-distr 7983  ax-1rid 7986  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  modqvalp1  10435  hashxp  10918  fsumconst  11619  divalglemnqt  12085  pcexp  12478  mulgnnass  13287  cnfldmulg  14132  2lgsoddprmlem3d  15351
  Copyright terms: Public domain W3C validator