| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddirp1d | Unicode version | ||
| Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| adddirp1d.a |
|
| adddirp1d.b |
|
| Ref | Expression |
|---|---|
| adddirp1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adddirp1d.a |
. . 3
| |
| 2 | 1cnd 8123 |
. . 3
| |
| 3 | adddirp1d.b |
. . 3
| |
| 4 | 1, 2, 3 | adddird 8133 |
. 2
|
| 5 | 3 | mulid2d 8126 |
. . 3
|
| 6 | 5 | oveq2d 5983 |
. 2
|
| 7 | 4, 6 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-mulcl 8058 ax-mulcom 8061 ax-mulass 8063 ax-distr 8064 ax-1rid 8067 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: modqvalp1 10525 hashxp 11008 fsumconst 11880 divalglemnqt 12346 pcexp 12747 mulgnnass 13608 cnfldmulg 14453 2lgsoddprmlem3d 15702 |
| Copyright terms: Public domain | W3C validator |