ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptcnv Unicode version

Theorem mptcnv 5013
Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.)
Hypothesis
Ref Expression
mptcnv.1  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  B )  <->  ( y  e.  C  /\  x  =  D ) ) )
Assertion
Ref Expression
mptcnv  |-  ( ph  ->  `' ( x  e.  A  |->  B )  =  ( y  e.  C  |->  D ) )
Distinct variable groups:    x, y, ph    x, C    x, D    y, A    y, B
Allowed substitution hints:    A( x)    B( x)    C( y)    D( y)

Proof of Theorem mptcnv
StepHypRef Expression
1 mptcnv.1 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  B )  <->  ( y  e.  C  /\  x  =  D ) ) )
21opabbidv 4055 . 2  |-  ( ph  ->  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }  =  { <. y ,  x >.  |  ( y  e.  C  /\  x  =  D ) } )
3 df-mpt 4052 . . . 4  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
43cnveqi 4786 . . 3  |-  `' ( x  e.  A  |->  B )  =  `' { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
5 cnvopab 5012 . . 3  |-  `' { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }
64, 5eqtri 2191 . 2  |-  `' ( x  e.  A  |->  B )  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }
7 df-mpt 4052 . 2  |-  ( y  e.  C  |->  D )  =  { <. y ,  x >.  |  (
y  e.  C  /\  x  =  D ) }
82, 6, 73eqtr4g 2228 1  |-  ( ph  ->  `' ( x  e.  A  |->  B )  =  ( y  e.  C  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {copab 4049    |-> cmpt 4050   `'ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-mpt 4052  df-xp 4617  df-rel 4618  df-cnv 4619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator