ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptcnv Unicode version

Theorem mptcnv 5068
Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.)
Hypothesis
Ref Expression
mptcnv.1  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  B )  <->  ( y  e.  C  /\  x  =  D ) ) )
Assertion
Ref Expression
mptcnv  |-  ( ph  ->  `' ( x  e.  A  |->  B )  =  ( y  e.  C  |->  D ) )
Distinct variable groups:    x, y, ph    x, C    x, D    y, A    y, B
Allowed substitution hints:    A( x)    B( x)    C( y)    D( y)

Proof of Theorem mptcnv
StepHypRef Expression
1 mptcnv.1 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  B )  <->  ( y  e.  C  /\  x  =  D ) ) )
21opabbidv 4095 . 2  |-  ( ph  ->  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }  =  { <. y ,  x >.  |  ( y  e.  C  /\  x  =  D ) } )
3 df-mpt 4092 . . . 4  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
43cnveqi 4837 . . 3  |-  `' ( x  e.  A  |->  B )  =  `' { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
5 cnvopab 5067 . . 3  |-  `' { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }
64, 5eqtri 2214 . 2  |-  `' ( x  e.  A  |->  B )  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }
7 df-mpt 4092 . 2  |-  ( y  e.  C  |->  D )  =  { <. y ,  x >.  |  (
y  e.  C  /\  x  =  D ) }
82, 6, 73eqtr4g 2251 1  |-  ( ph  ->  `' ( x  e.  A  |->  B )  =  ( y  e.  C  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {copab 4089    |-> cmpt 4090   `'ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-cnv 4667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator