ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptcnv Unicode version

Theorem mptcnv 5072
Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.)
Hypothesis
Ref Expression
mptcnv.1  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  B )  <->  ( y  e.  C  /\  x  =  D ) ) )
Assertion
Ref Expression
mptcnv  |-  ( ph  ->  `' ( x  e.  A  |->  B )  =  ( y  e.  C  |->  D ) )
Distinct variable groups:    x, y, ph    x, C    x, D    y, A    y, B
Allowed substitution hints:    A( x)    B( x)    C( y)    D( y)

Proof of Theorem mptcnv
StepHypRef Expression
1 mptcnv.1 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  B )  <->  ( y  e.  C  /\  x  =  D ) ) )
21opabbidv 4099 . 2  |-  ( ph  ->  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }  =  { <. y ,  x >.  |  ( y  e.  C  /\  x  =  D ) } )
3 df-mpt 4096 . . . 4  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
43cnveqi 4841 . . 3  |-  `' ( x  e.  A  |->  B )  =  `' { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
5 cnvopab 5071 . . 3  |-  `' { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }
64, 5eqtri 2217 . 2  |-  `' ( x  e.  A  |->  B )  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }
7 df-mpt 4096 . 2  |-  ( y  e.  C  |->  D )  =  { <. y ,  x >.  |  (
y  e.  C  /\  x  =  D ) }
82, 6, 73eqtr4g 2254 1  |-  ( ph  ->  `' ( x  e.  A  |->  B )  =  ( y  e.  C  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {copab 4093    |-> cmpt 4094   `'ccnv 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-mpt 4096  df-xp 4669  df-rel 4670  df-cnv 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator