| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptcnv | GIF version | ||
| Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.) |
| Ref | Expression |
|---|---|
| mptcnv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) |
| Ref | Expression |
|---|---|
| mptcnv | ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptcnv.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) | |
| 2 | 1 | opabbidv 4100 | . 2 ⊢ (𝜑 → {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷)}) |
| 3 | df-mpt 4097 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 4 | 3 | cnveqi 4842 | . . 3 ⊢ ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 5 | cnvopab 5072 | . . 3 ⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 6 | 4, 5 | eqtri 2217 | . 2 ⊢ ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 7 | df-mpt 4097 | . 2 ⊢ (𝑦 ∈ 𝐶 ↦ 𝐷) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷)} | |
| 8 | 2, 6, 7 | 3eqtr4g 2254 | 1 ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {copab 4094 ↦ cmpt 4095 ◡ccnv 4663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-mpt 4097 df-xp 4670 df-rel 4671 df-cnv 4672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |