![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptcnv | GIF version |
Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.) |
Ref | Expression |
---|---|
mptcnv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) |
Ref | Expression |
---|---|
mptcnv | ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptcnv.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) | |
2 | 1 | opabbidv 4071 | . 2 ⊢ (𝜑 → {⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷)}) |
3 | df-mpt 4068 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 3 | cnveqi 4804 | . . 3 ⊢ ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = ◡{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | cnvopab 5032 | . . 3 ⊢ ◡{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
6 | 4, 5 | eqtri 2198 | . 2 ⊢ ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
7 | df-mpt 4068 | . 2 ⊢ (𝑦 ∈ 𝐶 ↦ 𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷)} | |
8 | 2, 6, 7 | 3eqtr4g 2235 | 1 ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {copab 4065 ↦ cmpt 4066 ◡ccnv 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-mpt 4068 df-xp 4634 df-rel 4635 df-cnv 4636 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |