ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqi Unicode version

Theorem cnveqi 4838
Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.)
Hypothesis
Ref Expression
cnveqi.1  |-  A  =  B
Assertion
Ref Expression
cnveqi  |-  `' A  =  `' B

Proof of Theorem cnveqi
StepHypRef Expression
1 cnveqi.1 . 2  |-  A  =  B
2 cnveq 4837 . 2  |-  ( A  =  B  ->  `' A  =  `' B
)
31, 2ax-mp 5 1  |-  `' A  =  `' B
Colors of variables: wff set class
Syntax hints:    = wceq 1364   `'ccnv 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3160  df-ss 3167  df-br 4031  df-opab 4092  df-cnv 4668
This theorem is referenced by:  mptcnv  5069  cnvxp  5085  xp0  5086  imainrect  5112  cnvcnv  5119  mptpreima  5160  co01  5181  coi2  5183  cocnvres  5191  fcoi1  5435  fun11iun  5522  f1ocnvd  6122  cnvoprab  6289  f1od2  6290  mapsncnv  6751  sbthlemi8  7025  caseinj  7150  djuinj  7167  fisumcom2  11584  fprodcom2fi  11772
  Copyright terms: Public domain W3C validator