![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnveqi | Unicode version |
Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.) |
Ref | Expression |
---|---|
cnveqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cnveqi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | cnveq 4837 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3160 df-ss 3167 df-br 4031 df-opab 4092 df-cnv 4668 |
This theorem is referenced by: mptcnv 5069 cnvxp 5085 xp0 5086 imainrect 5112 cnvcnv 5119 mptpreima 5160 co01 5181 coi2 5183 cocnvres 5191 fcoi1 5435 fun11iun 5522 f1ocnvd 6122 cnvoprab 6289 f1od2 6290 mapsncnv 6751 sbthlemi8 7025 caseinj 7150 djuinj 7167 fisumcom2 11584 fprodcom2fi 11772 |
Copyright terms: Public domain | W3C validator |