| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnveqi | Unicode version | ||
| Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 |
|
| Ref | Expression |
|---|---|
| cnveqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 |
. 2
| |
| 2 | cnveq 4870 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 df-br 4060 df-opab 4122 df-cnv 4701 |
| This theorem is referenced by: mptcnv 5104 cnvxp 5120 xp0 5121 imainrect 5147 cnvcnv 5154 mptpreima 5195 co01 5216 coi2 5218 cocnvres 5226 fcoi1 5478 fun11iun 5565 f1ocnvd 6171 cnvoprab 6343 f1od2 6344 mapsncnv 6805 sbthlemi8 7092 caseinj 7217 djuinj 7234 fisumcom2 11864 fprodcom2fi 12052 |
| Copyright terms: Public domain | W3C validator |