ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqi Unicode version

Theorem cnveqi 4779
Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.)
Hypothesis
Ref Expression
cnveqi.1  |-  A  =  B
Assertion
Ref Expression
cnveqi  |-  `' A  =  `' B

Proof of Theorem cnveqi
StepHypRef Expression
1 cnveqi.1 . 2  |-  A  =  B
2 cnveq 4778 . 2  |-  ( A  =  B  ->  `' A  =  `' B
)
31, 2ax-mp 5 1  |-  `' A  =  `' B
Colors of variables: wff set class
Syntax hints:    = wceq 1343   `'ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129  df-br 3983  df-opab 4044  df-cnv 4612
This theorem is referenced by:  mptcnv  5006  cnvxp  5022  xp0  5023  imainrect  5049  cnvcnv  5056  mptpreima  5097  co01  5118  coi2  5120  cocnvres  5128  fcoi1  5368  fun11iun  5453  f1ocnvd  6040  cnvoprab  6202  f1od2  6203  mapsncnv  6661  sbthlemi8  6929  caseinj  7054  djuinj  7071  fisumcom2  11379  fprodcom2fi  11567
  Copyright terms: Public domain W3C validator