Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnveqi | Unicode version |
Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.) |
Ref | Expression |
---|---|
cnveqi.1 |
Ref | Expression |
---|---|
cnveqi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqi.1 | . 2 | |
2 | cnveq 4760 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 ccnv 4585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-in 3108 df-ss 3115 df-br 3966 df-opab 4026 df-cnv 4594 |
This theorem is referenced by: mptcnv 4988 cnvxp 5004 xp0 5005 imainrect 5031 cnvcnv 5038 mptpreima 5079 co01 5100 coi2 5102 cocnvres 5110 fcoi1 5350 fun11iun 5435 f1ocnvd 6022 cnvoprab 6181 f1od2 6182 mapsncnv 6640 sbthlemi8 6908 caseinj 7033 djuinj 7050 fisumcom2 11335 fprodcom2fi 11523 |
Copyright terms: Public domain | W3C validator |