![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnveqi | Unicode version |
Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.) |
Ref | Expression |
---|---|
cnveqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cnveqi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | cnveq 4836 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 df-br 4030 df-opab 4091 df-cnv 4667 |
This theorem is referenced by: mptcnv 5068 cnvxp 5084 xp0 5085 imainrect 5111 cnvcnv 5118 mptpreima 5159 co01 5180 coi2 5182 cocnvres 5190 fcoi1 5434 fun11iun 5521 f1ocnvd 6120 cnvoprab 6287 f1od2 6288 mapsncnv 6749 sbthlemi8 7023 caseinj 7148 djuinj 7165 fisumcom2 11581 fprodcom2fi 11769 |
Copyright terms: Public domain | W3C validator |