ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addn0nid Unicode version

Theorem addn0nid 8520
Description: Adding a nonzero number to a complex number does not yield the complex number. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
addn0nid  |-  ( ( X  e.  CC  /\  Y  e.  CC  /\  Y  =/=  0 )  ->  ( X  +  Y )  =/=  X )

Proof of Theorem addn0nid
StepHypRef Expression
1 addid0 8519 . . . 4  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <-> 
Y  =  0 ) )
21biimpd 144 . . 3  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  ->  Y  =  0 ) )
32necon3d 2444 . 2  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( Y  =/=  0  ->  ( X  +  Y
)  =/=  X ) )
433impia 1224 1  |-  ( ( X  e.  CC  /\  Y  e.  CC  /\  Y  =/=  0 )  ->  ( X  +  Y )  =/=  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400  (class class class)co 6001   CCcc 7997   0cc0 7999    + caddc 8002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator