ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pceulem Unicode version

Theorem pceulem 12222
Description: Lemma for pceu 12223. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
pceu.3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
pceu.4  |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
pceu.5  |-  ( ph  ->  P  e.  Prime )
pceu.6  |-  ( ph  ->  N  =/=  0 )
pceu.7  |-  ( ph  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
pceu.8  |-  ( ph  ->  N  =  ( x  /  y ) )
pceu.9  |-  ( ph  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
pceu.10  |-  ( ph  ->  N  =  ( s  /  t ) )
Assertion
Ref Expression
pceulem  |-  ( ph  ->  ( S  -  T
)  =  ( U  -  V ) )
Distinct variable groups:    n, s, t, x, y, N    P, n, s, t, x, y    S, s, t    T, s, t
Allowed substitution hints:    ph( x, y, t, n, s)    S( x, y, n)    T( x, y, n)    U( x, y, t, n, s)    V( x, y, t, n, s)

Proof of Theorem pceulem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pceu.7 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
21simprd 113 . . . . . . . . . 10  |-  ( ph  ->  y  e.  NN )
32nncnd 8867 . . . . . . . . 9  |-  ( ph  ->  y  e.  CC )
4 pceu.9 . . . . . . . . . . 11  |-  ( ph  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
54simpld 111 . . . . . . . . . 10  |-  ( ph  ->  s  e.  ZZ )
65zcnd 9310 . . . . . . . . 9  |-  ( ph  ->  s  e.  CC )
73, 6mulcomd 7916 . . . . . . . 8  |-  ( ph  ->  ( y  x.  s
)  =  ( s  x.  y ) )
8 pceu.10 . . . . . . . . . 10  |-  ( ph  ->  N  =  ( s  /  t ) )
9 pceu.8 . . . . . . . . . 10  |-  ( ph  ->  N  =  ( x  /  y ) )
108, 9eqtr3d 2200 . . . . . . . . 9  |-  ( ph  ->  ( s  /  t
)  =  ( x  /  y ) )
114simprd 113 . . . . . . . . . . 11  |-  ( ph  ->  t  e.  NN )
1211nncnd 8867 . . . . . . . . . 10  |-  ( ph  ->  t  e.  CC )
131simpld 111 . . . . . . . . . . 11  |-  ( ph  ->  x  e.  ZZ )
1413zcnd 9310 . . . . . . . . . 10  |-  ( ph  ->  x  e.  CC )
1511nnap0d 8899 . . . . . . . . . 10  |-  ( ph  ->  t #  0 )
162nnap0d 8899 . . . . . . . . . 10  |-  ( ph  ->  y #  0 )
176, 12, 14, 3, 15, 16divmuleqapd 8725 . . . . . . . . 9  |-  ( ph  ->  ( ( s  / 
t )  =  ( x  /  y )  <-> 
( s  x.  y
)  =  ( x  x.  t ) ) )
1810, 17mpbid 146 . . . . . . . 8  |-  ( ph  ->  ( s  x.  y
)  =  ( x  x.  t ) )
197, 18eqtrd 2198 . . . . . . 7  |-  ( ph  ->  ( y  x.  s
)  =  ( x  x.  t ) )
2019breq2d 3993 . . . . . 6  |-  ( ph  ->  ( ( P ^
z )  ||  (
y  x.  s )  <-> 
( P ^ z
)  ||  ( x  x.  t ) ) )
2120rabbidv 2714 . . . . 5  |-  ( ph  ->  { z  e.  NN0  |  ( P ^ z
)  ||  ( y  x.  s ) }  =  { z  e.  NN0  |  ( P ^ z
)  ||  ( x  x.  t ) } )
22 oveq2 5849 . . . . . . 7  |-  ( n  =  z  ->  ( P ^ n )  =  ( P ^ z
) )
2322breq1d 3991 . . . . . 6  |-  ( n  =  z  ->  (
( P ^ n
)  ||  ( y  x.  s )  <->  ( P ^ z )  ||  ( y  x.  s
) ) )
2423cbvrabv 2724 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) }  =  {
z  e.  NN0  | 
( P ^ z
)  ||  ( y  x.  s ) }
2522breq1d 3991 . . . . . 6  |-  ( n  =  z  ->  (
( P ^ n
)  ||  ( x  x.  t )  <->  ( P ^ z )  ||  ( x  x.  t
) ) )
2625cbvrabv 2724 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( x  x.  t
) }  =  {
z  e.  NN0  | 
( P ^ z
)  ||  ( x  x.  t ) }
2721, 24, 263eqtr4g 2223 . . . 4  |-  ( ph  ->  { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) }  =  { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } )
2827supeq1d 6948 . . 3  |-  ( ph  ->  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
29 pceu.5 . . . 4  |-  ( ph  ->  P  e.  Prime )
302nnzd 9308 . . . 4  |-  ( ph  ->  y  e.  ZZ )
312nnne0d 8898 . . . 4  |-  ( ph  ->  y  =/=  0 )
32 pceu.6 . . . . 5  |-  ( ph  ->  N  =/=  0 )
3312, 15div0apd 8679 . . . . . . . 8  |-  ( ph  ->  ( 0  /  t
)  =  0 )
34 oveq1 5848 . . . . . . . . 9  |-  ( s  =  0  ->  (
s  /  t )  =  ( 0  / 
t ) )
3534eqeq1d 2174 . . . . . . . 8  |-  ( s  =  0  ->  (
( s  /  t
)  =  0  <->  (
0  /  t )  =  0 ) )
3633, 35syl5ibrcom 156 . . . . . . 7  |-  ( ph  ->  ( s  =  0  ->  ( s  / 
t )  =  0 ) )
378eqeq1d 2174 . . . . . . 7  |-  ( ph  ->  ( N  =  0  <-> 
( s  /  t
)  =  0 ) )
3836, 37sylibrd 168 . . . . . 6  |-  ( ph  ->  ( s  =  0  ->  N  =  0 ) )
3938necon3d 2379 . . . . 5  |-  ( ph  ->  ( N  =/=  0  ->  s  =/=  0 ) )
4032, 39mpd 13 . . . 4  |-  ( ph  ->  s  =/=  0 )
41 pcval.2 . . . . 5  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
42 pceu.3 . . . . 5  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
43 eqid 2165 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) } ,  RR ,  <  )
4441, 42, 43pcpremul 12221 . . . 4  |-  ( ( P  e.  Prime  /\  (
y  e.  ZZ  /\  y  =/=  0 )  /\  ( s  e.  ZZ  /\  s  =/=  0 ) )  ->  ( T  +  U )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  ) )
4529, 30, 31, 5, 40, 44syl122anc 1237 . . 3  |-  ( ph  ->  ( T  +  U
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  ) )
463, 16div0apd 8679 . . . . . . . 8  |-  ( ph  ->  ( 0  /  y
)  =  0 )
47 oveq1 5848 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
4847eqeq1d 2174 . . . . . . . 8  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
4946, 48syl5ibrcom 156 . . . . . . 7  |-  ( ph  ->  ( x  =  0  ->  ( x  / 
y )  =  0 ) )
509eqeq1d 2174 . . . . . . 7  |-  ( ph  ->  ( N  =  0  <-> 
( x  /  y
)  =  0 ) )
5149, 50sylibrd 168 . . . . . 6  |-  ( ph  ->  ( x  =  0  ->  N  =  0 ) )
5251necon3d 2379 . . . . 5  |-  ( ph  ->  ( N  =/=  0  ->  x  =/=  0 ) )
5332, 52mpd 13 . . . 4  |-  ( ph  ->  x  =/=  0 )
5411nnzd 9308 . . . 4  |-  ( ph  ->  t  e.  ZZ )
5511nnne0d 8898 . . . 4  |-  ( ph  ->  t  =/=  0 )
56 pcval.1 . . . . 5  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
57 pceu.4 . . . . 5  |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
58 eqid 2165 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( x  x.  t
) } ,  RR ,  <  )
5956, 57, 58pcpremul 12221 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  ( t  e.  ZZ  /\  t  =/=  0 ) )  ->  ( S  +  V )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
6029, 13, 53, 54, 55, 59syl122anc 1237 . . 3  |-  ( ph  ->  ( S  +  V
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
6128, 45, 603eqtr4d 2208 . 2  |-  ( ph  ->  ( T  +  U
)  =  ( S  +  V ) )
62 prmuz2 12059 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
6329, 62syl 14 . . . . 5  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
64 eqid 2165 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  y }
6564, 41pcprecl 12217 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  ( T  e. 
NN0  /\  ( P ^ T )  ||  y
) )
6665simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  T  e.  NN0 )
6763, 30, 31, 66syl12anc 1226 . . . 4  |-  ( ph  ->  T  e.  NN0 )
6867nn0cnd 9165 . . 3  |-  ( ph  ->  T  e.  CC )
69 eqid 2165 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  s }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  s }
7069, 42pcprecl 12217 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
s  e.  ZZ  /\  s  =/=  0 ) )  ->  ( U  e. 
NN0  /\  ( P ^ U )  ||  s
) )
7170simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
s  e.  ZZ  /\  s  =/=  0 ) )  ->  U  e.  NN0 )
7263, 5, 40, 71syl12anc 1226 . . . 4  |-  ( ph  ->  U  e.  NN0 )
7372nn0cnd 9165 . . 3  |-  ( ph  ->  U  e.  CC )
74 eqid 2165 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  x }
7574, 56pcprecl 12217 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( S  e. 
NN0  /\  ( P ^ S )  ||  x
) )
7675simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  S  e.  NN0 )
7763, 13, 53, 76syl12anc 1226 . . . 4  |-  ( ph  ->  S  e.  NN0 )
7877nn0cnd 9165 . . 3  |-  ( ph  ->  S  e.  CC )
79 eqid 2165 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  t }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  t }
8079, 57pcprecl 12217 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
t  e.  ZZ  /\  t  =/=  0 ) )  ->  ( V  e. 
NN0  /\  ( P ^ V )  ||  t
) )
8180simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
t  e.  ZZ  /\  t  =/=  0 ) )  ->  V  e.  NN0 )
8263, 54, 55, 81syl12anc 1226 . . . 4  |-  ( ph  ->  V  e.  NN0 )
8382nn0cnd 9165 . . 3  |-  ( ph  ->  V  e.  CC )
8468, 73, 78, 83addsubeq4d 8256 . 2  |-  ( ph  ->  ( ( T  +  U )  =  ( S  +  V )  <-> 
( S  -  T
)  =  ( U  -  V ) ) )
8561, 84mpbid 146 1  |-  ( ph  ->  ( S  -  T
)  =  ( U  -  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    =/= wne 2335   {crab 2447   class class class wbr 3981   ` cfv 5187  (class class class)co 5841   supcsup 6943   RRcr 7748   0cc0 7749    + caddc 7752    x. cmul 7754    < clt 7929    - cmin 8065    / cdiv 8564   NNcn 8853   2c2 8904   NN0cn0 9110   ZZcz 9187   ZZ>=cuz 9462   ^cexp 10450    || cdvds 11723   Primecprime 12035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-en 6703  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-gcd 11872  df-prm 12036
This theorem is referenced by:  pceu  12223
  Copyright terms: Public domain W3C validator