ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pceulem Unicode version

Theorem pceulem 12432
Description: Lemma for pceu 12433. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
pceu.3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
pceu.4  |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
pceu.5  |-  ( ph  ->  P  e.  Prime )
pceu.6  |-  ( ph  ->  N  =/=  0 )
pceu.7  |-  ( ph  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
pceu.8  |-  ( ph  ->  N  =  ( x  /  y ) )
pceu.9  |-  ( ph  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
pceu.10  |-  ( ph  ->  N  =  ( s  /  t ) )
Assertion
Ref Expression
pceulem  |-  ( ph  ->  ( S  -  T
)  =  ( U  -  V ) )
Distinct variable groups:    n, s, t, x, y, N    P, n, s, t, x, y    S, s, t    T, s, t
Allowed substitution hints:    ph( x, y, t, n, s)    S( x, y, n)    T( x, y, n)    U( x, y, t, n, s)    V( x, y, t, n, s)

Proof of Theorem pceulem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pceu.7 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
21simprd 114 . . . . . . . . . 10  |-  ( ph  ->  y  e.  NN )
32nncnd 8996 . . . . . . . . 9  |-  ( ph  ->  y  e.  CC )
4 pceu.9 . . . . . . . . . . 11  |-  ( ph  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
54simpld 112 . . . . . . . . . 10  |-  ( ph  ->  s  e.  ZZ )
65zcnd 9440 . . . . . . . . 9  |-  ( ph  ->  s  e.  CC )
73, 6mulcomd 8041 . . . . . . . 8  |-  ( ph  ->  ( y  x.  s
)  =  ( s  x.  y ) )
8 pceu.10 . . . . . . . . . 10  |-  ( ph  ->  N  =  ( s  /  t ) )
9 pceu.8 . . . . . . . . . 10  |-  ( ph  ->  N  =  ( x  /  y ) )
108, 9eqtr3d 2228 . . . . . . . . 9  |-  ( ph  ->  ( s  /  t
)  =  ( x  /  y ) )
114simprd 114 . . . . . . . . . . 11  |-  ( ph  ->  t  e.  NN )
1211nncnd 8996 . . . . . . . . . 10  |-  ( ph  ->  t  e.  CC )
131simpld 112 . . . . . . . . . . 11  |-  ( ph  ->  x  e.  ZZ )
1413zcnd 9440 . . . . . . . . . 10  |-  ( ph  ->  x  e.  CC )
1511nnap0d 9028 . . . . . . . . . 10  |-  ( ph  ->  t #  0 )
162nnap0d 9028 . . . . . . . . . 10  |-  ( ph  ->  y #  0 )
176, 12, 14, 3, 15, 16divmuleqapd 8852 . . . . . . . . 9  |-  ( ph  ->  ( ( s  / 
t )  =  ( x  /  y )  <-> 
( s  x.  y
)  =  ( x  x.  t ) ) )
1810, 17mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( s  x.  y
)  =  ( x  x.  t ) )
197, 18eqtrd 2226 . . . . . . 7  |-  ( ph  ->  ( y  x.  s
)  =  ( x  x.  t ) )
2019breq2d 4041 . . . . . 6  |-  ( ph  ->  ( ( P ^
z )  ||  (
y  x.  s )  <-> 
( P ^ z
)  ||  ( x  x.  t ) ) )
2120rabbidv 2749 . . . . 5  |-  ( ph  ->  { z  e.  NN0  |  ( P ^ z
)  ||  ( y  x.  s ) }  =  { z  e.  NN0  |  ( P ^ z
)  ||  ( x  x.  t ) } )
22 oveq2 5926 . . . . . . 7  |-  ( n  =  z  ->  ( P ^ n )  =  ( P ^ z
) )
2322breq1d 4039 . . . . . 6  |-  ( n  =  z  ->  (
( P ^ n
)  ||  ( y  x.  s )  <->  ( P ^ z )  ||  ( y  x.  s
) ) )
2423cbvrabv 2759 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) }  =  {
z  e.  NN0  | 
( P ^ z
)  ||  ( y  x.  s ) }
2522breq1d 4039 . . . . . 6  |-  ( n  =  z  ->  (
( P ^ n
)  ||  ( x  x.  t )  <->  ( P ^ z )  ||  ( x  x.  t
) ) )
2625cbvrabv 2759 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( x  x.  t
) }  =  {
z  e.  NN0  | 
( P ^ z
)  ||  ( x  x.  t ) }
2721, 24, 263eqtr4g 2251 . . . 4  |-  ( ph  ->  { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) }  =  { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } )
2827supeq1d 7046 . . 3  |-  ( ph  ->  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
29 pceu.5 . . . 4  |-  ( ph  ->  P  e.  Prime )
302nnzd 9438 . . . 4  |-  ( ph  ->  y  e.  ZZ )
312nnne0d 9027 . . . 4  |-  ( ph  ->  y  =/=  0 )
32 pceu.6 . . . . 5  |-  ( ph  ->  N  =/=  0 )
3312, 15div0apd 8806 . . . . . . . 8  |-  ( ph  ->  ( 0  /  t
)  =  0 )
34 oveq1 5925 . . . . . . . . 9  |-  ( s  =  0  ->  (
s  /  t )  =  ( 0  / 
t ) )
3534eqeq1d 2202 . . . . . . . 8  |-  ( s  =  0  ->  (
( s  /  t
)  =  0  <->  (
0  /  t )  =  0 ) )
3633, 35syl5ibrcom 157 . . . . . . 7  |-  ( ph  ->  ( s  =  0  ->  ( s  / 
t )  =  0 ) )
378eqeq1d 2202 . . . . . . 7  |-  ( ph  ->  ( N  =  0  <-> 
( s  /  t
)  =  0 ) )
3836, 37sylibrd 169 . . . . . 6  |-  ( ph  ->  ( s  =  0  ->  N  =  0 ) )
3938necon3d 2408 . . . . 5  |-  ( ph  ->  ( N  =/=  0  ->  s  =/=  0 ) )
4032, 39mpd 13 . . . 4  |-  ( ph  ->  s  =/=  0 )
41 pcval.2 . . . . 5  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
42 pceu.3 . . . . 5  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
43 eqid 2193 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) } ,  RR ,  <  )
4441, 42, 43pcpremul 12431 . . . 4  |-  ( ( P  e.  Prime  /\  (
y  e.  ZZ  /\  y  =/=  0 )  /\  ( s  e.  ZZ  /\  s  =/=  0 ) )  ->  ( T  +  U )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  ) )
4529, 30, 31, 5, 40, 44syl122anc 1258 . . 3  |-  ( ph  ->  ( T  +  U
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  ) )
463, 16div0apd 8806 . . . . . . . 8  |-  ( ph  ->  ( 0  /  y
)  =  0 )
47 oveq1 5925 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
4847eqeq1d 2202 . . . . . . . 8  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
4946, 48syl5ibrcom 157 . . . . . . 7  |-  ( ph  ->  ( x  =  0  ->  ( x  / 
y )  =  0 ) )
509eqeq1d 2202 . . . . . . 7  |-  ( ph  ->  ( N  =  0  <-> 
( x  /  y
)  =  0 ) )
5149, 50sylibrd 169 . . . . . 6  |-  ( ph  ->  ( x  =  0  ->  N  =  0 ) )
5251necon3d 2408 . . . . 5  |-  ( ph  ->  ( N  =/=  0  ->  x  =/=  0 ) )
5332, 52mpd 13 . . . 4  |-  ( ph  ->  x  =/=  0 )
5411nnzd 9438 . . . 4  |-  ( ph  ->  t  e.  ZZ )
5511nnne0d 9027 . . . 4  |-  ( ph  ->  t  =/=  0 )
56 pcval.1 . . . . 5  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
57 pceu.4 . . . . 5  |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
58 eqid 2193 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( x  x.  t
) } ,  RR ,  <  )
5956, 57, 58pcpremul 12431 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  ( t  e.  ZZ  /\  t  =/=  0 ) )  ->  ( S  +  V )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
6029, 13, 53, 54, 55, 59syl122anc 1258 . . 3  |-  ( ph  ->  ( S  +  V
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
6128, 45, 603eqtr4d 2236 . 2  |-  ( ph  ->  ( T  +  U
)  =  ( S  +  V ) )
62 prmuz2 12269 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
6329, 62syl 14 . . . . 5  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
64 eqid 2193 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  y }
6564, 41pcprecl 12427 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  ( T  e. 
NN0  /\  ( P ^ T )  ||  y
) )
6665simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  T  e.  NN0 )
6763, 30, 31, 66syl12anc 1247 . . . 4  |-  ( ph  ->  T  e.  NN0 )
6867nn0cnd 9295 . . 3  |-  ( ph  ->  T  e.  CC )
69 eqid 2193 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  s }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  s }
7069, 42pcprecl 12427 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
s  e.  ZZ  /\  s  =/=  0 ) )  ->  ( U  e. 
NN0  /\  ( P ^ U )  ||  s
) )
7170simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
s  e.  ZZ  /\  s  =/=  0 ) )  ->  U  e.  NN0 )
7263, 5, 40, 71syl12anc 1247 . . . 4  |-  ( ph  ->  U  e.  NN0 )
7372nn0cnd 9295 . . 3  |-  ( ph  ->  U  e.  CC )
74 eqid 2193 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  x }
7574, 56pcprecl 12427 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( S  e. 
NN0  /\  ( P ^ S )  ||  x
) )
7675simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  S  e.  NN0 )
7763, 13, 53, 76syl12anc 1247 . . . 4  |-  ( ph  ->  S  e.  NN0 )
7877nn0cnd 9295 . . 3  |-  ( ph  ->  S  e.  CC )
79 eqid 2193 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  t }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  t }
8079, 57pcprecl 12427 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
t  e.  ZZ  /\  t  =/=  0 ) )  ->  ( V  e. 
NN0  /\  ( P ^ V )  ||  t
) )
8180simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
t  e.  ZZ  /\  t  =/=  0 ) )  ->  V  e.  NN0 )
8263, 54, 55, 81syl12anc 1247 . . . 4  |-  ( ph  ->  V  e.  NN0 )
8382nn0cnd 9295 . . 3  |-  ( ph  ->  V  e.  CC )
8468, 73, 78, 83addsubeq4d 8381 . 2  |-  ( ph  ->  ( ( T  +  U )  =  ( S  +  V )  <-> 
( S  -  T
)  =  ( U  -  V ) ) )
8561, 84mpbid 147 1  |-  ( ph  ->  ( S  -  T
)  =  ( U  -  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   {crab 2476   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   supcsup 7041   RRcr 7871   0cc0 7872    + caddc 7875    x. cmul 7877    < clt 8054    - cmin 8190    / cdiv 8691   NNcn 8982   2c2 9033   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ^cexp 10609    || cdvds 11930   Primecprime 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246
This theorem is referenced by:  pceu  12433
  Copyright terms: Public domain W3C validator