ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pceulem Unicode version

Theorem pceulem 12185
Description: Lemma for pceu 12186. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
pceu.3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
pceu.4  |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
pceu.5  |-  ( ph  ->  P  e.  Prime )
pceu.6  |-  ( ph  ->  N  =/=  0 )
pceu.7  |-  ( ph  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
pceu.8  |-  ( ph  ->  N  =  ( x  /  y ) )
pceu.9  |-  ( ph  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
pceu.10  |-  ( ph  ->  N  =  ( s  /  t ) )
Assertion
Ref Expression
pceulem  |-  ( ph  ->  ( S  -  T
)  =  ( U  -  V ) )
Distinct variable groups:    n, s, t, x, y, N    P, n, s, t, x, y    S, s, t    T, s, t
Allowed substitution hints:    ph( x, y, t, n, s)    S( x, y, n)    T( x, y, n)    U( x, y, t, n, s)    V( x, y, t, n, s)

Proof of Theorem pceulem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pceu.7 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
21simprd 113 . . . . . . . . . 10  |-  ( ph  ->  y  e.  NN )
32nncnd 8853 . . . . . . . . 9  |-  ( ph  ->  y  e.  CC )
4 pceu.9 . . . . . . . . . . 11  |-  ( ph  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
54simpld 111 . . . . . . . . . 10  |-  ( ph  ->  s  e.  ZZ )
65zcnd 9293 . . . . . . . . 9  |-  ( ph  ->  s  e.  CC )
73, 6mulcomd 7902 . . . . . . . 8  |-  ( ph  ->  ( y  x.  s
)  =  ( s  x.  y ) )
8 pceu.10 . . . . . . . . . 10  |-  ( ph  ->  N  =  ( s  /  t ) )
9 pceu.8 . . . . . . . . . 10  |-  ( ph  ->  N  =  ( x  /  y ) )
108, 9eqtr3d 2192 . . . . . . . . 9  |-  ( ph  ->  ( s  /  t
)  =  ( x  /  y ) )
114simprd 113 . . . . . . . . . . 11  |-  ( ph  ->  t  e.  NN )
1211nncnd 8853 . . . . . . . . . 10  |-  ( ph  ->  t  e.  CC )
131simpld 111 . . . . . . . . . . 11  |-  ( ph  ->  x  e.  ZZ )
1413zcnd 9293 . . . . . . . . . 10  |-  ( ph  ->  x  e.  CC )
1511nnap0d 8885 . . . . . . . . . 10  |-  ( ph  ->  t #  0 )
162nnap0d 8885 . . . . . . . . . 10  |-  ( ph  ->  y #  0 )
176, 12, 14, 3, 15, 16divmuleqapd 8711 . . . . . . . . 9  |-  ( ph  ->  ( ( s  / 
t )  =  ( x  /  y )  <-> 
( s  x.  y
)  =  ( x  x.  t ) ) )
1810, 17mpbid 146 . . . . . . . 8  |-  ( ph  ->  ( s  x.  y
)  =  ( x  x.  t ) )
197, 18eqtrd 2190 . . . . . . 7  |-  ( ph  ->  ( y  x.  s
)  =  ( x  x.  t ) )
2019breq2d 3979 . . . . . 6  |-  ( ph  ->  ( ( P ^
z )  ||  (
y  x.  s )  <-> 
( P ^ z
)  ||  ( x  x.  t ) ) )
2120rabbidv 2701 . . . . 5  |-  ( ph  ->  { z  e.  NN0  |  ( P ^ z
)  ||  ( y  x.  s ) }  =  { z  e.  NN0  |  ( P ^ z
)  ||  ( x  x.  t ) } )
22 oveq2 5835 . . . . . . 7  |-  ( n  =  z  ->  ( P ^ n )  =  ( P ^ z
) )
2322breq1d 3977 . . . . . 6  |-  ( n  =  z  ->  (
( P ^ n
)  ||  ( y  x.  s )  <->  ( P ^ z )  ||  ( y  x.  s
) ) )
2423cbvrabv 2711 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) }  =  {
z  e.  NN0  | 
( P ^ z
)  ||  ( y  x.  s ) }
2522breq1d 3977 . . . . . 6  |-  ( n  =  z  ->  (
( P ^ n
)  ||  ( x  x.  t )  <->  ( P ^ z )  ||  ( x  x.  t
) ) )
2625cbvrabv 2711 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( x  x.  t
) }  =  {
z  e.  NN0  | 
( P ^ z
)  ||  ( x  x.  t ) }
2721, 24, 263eqtr4g 2215 . . . 4  |-  ( ph  ->  { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) }  =  { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } )
2827supeq1d 6934 . . 3  |-  ( ph  ->  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
29 pceu.5 . . . 4  |-  ( ph  ->  P  e.  Prime )
302nnzd 9291 . . . 4  |-  ( ph  ->  y  e.  ZZ )
312nnne0d 8884 . . . 4  |-  ( ph  ->  y  =/=  0 )
32 pceu.6 . . . . 5  |-  ( ph  ->  N  =/=  0 )
3312, 15div0apd 8665 . . . . . . . 8  |-  ( ph  ->  ( 0  /  t
)  =  0 )
34 oveq1 5834 . . . . . . . . 9  |-  ( s  =  0  ->  (
s  /  t )  =  ( 0  / 
t ) )
3534eqeq1d 2166 . . . . . . . 8  |-  ( s  =  0  ->  (
( s  /  t
)  =  0  <->  (
0  /  t )  =  0 ) )
3633, 35syl5ibrcom 156 . . . . . . 7  |-  ( ph  ->  ( s  =  0  ->  ( s  / 
t )  =  0 ) )
378eqeq1d 2166 . . . . . . 7  |-  ( ph  ->  ( N  =  0  <-> 
( s  /  t
)  =  0 ) )
3836, 37sylibrd 168 . . . . . 6  |-  ( ph  ->  ( s  =  0  ->  N  =  0 ) )
3938necon3d 2371 . . . . 5  |-  ( ph  ->  ( N  =/=  0  ->  s  =/=  0 ) )
4032, 39mpd 13 . . . 4  |-  ( ph  ->  s  =/=  0 )
41 pcval.2 . . . . 5  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
42 pceu.3 . . . . 5  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
43 eqid 2157 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) } ,  RR ,  <  )
4441, 42, 43pcpremul 12184 . . . 4  |-  ( ( P  e.  Prime  /\  (
y  e.  ZZ  /\  y  =/=  0 )  /\  ( s  e.  ZZ  /\  s  =/=  0 ) )  ->  ( T  +  U )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  ) )
4529, 30, 31, 5, 40, 44syl122anc 1229 . . 3  |-  ( ph  ->  ( T  +  U
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  ) )
463, 16div0apd 8665 . . . . . . . 8  |-  ( ph  ->  ( 0  /  y
)  =  0 )
47 oveq1 5834 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
4847eqeq1d 2166 . . . . . . . 8  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
4946, 48syl5ibrcom 156 . . . . . . 7  |-  ( ph  ->  ( x  =  0  ->  ( x  / 
y )  =  0 ) )
509eqeq1d 2166 . . . . . . 7  |-  ( ph  ->  ( N  =  0  <-> 
( x  /  y
)  =  0 ) )
5149, 50sylibrd 168 . . . . . 6  |-  ( ph  ->  ( x  =  0  ->  N  =  0 ) )
5251necon3d 2371 . . . . 5  |-  ( ph  ->  ( N  =/=  0  ->  x  =/=  0 ) )
5332, 52mpd 13 . . . 4  |-  ( ph  ->  x  =/=  0 )
5411nnzd 9291 . . . 4  |-  ( ph  ->  t  e.  ZZ )
5511nnne0d 8884 . . . 4  |-  ( ph  ->  t  =/=  0 )
56 pcval.1 . . . . 5  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
57 pceu.4 . . . . 5  |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
58 eqid 2157 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( x  x.  t
) } ,  RR ,  <  )
5956, 57, 58pcpremul 12184 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  ( t  e.  ZZ  /\  t  =/=  0 ) )  ->  ( S  +  V )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
6029, 13, 53, 54, 55, 59syl122anc 1229 . . 3  |-  ( ph  ->  ( S  +  V
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
6128, 45, 603eqtr4d 2200 . 2  |-  ( ph  ->  ( T  +  U
)  =  ( S  +  V ) )
62 prmuz2 12024 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
6329, 62syl 14 . . . . 5  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
64 eqid 2157 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  y }
6564, 41pcprecl 12180 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  ( T  e. 
NN0  /\  ( P ^ T )  ||  y
) )
6665simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  T  e.  NN0 )
6763, 30, 31, 66syl12anc 1218 . . . 4  |-  ( ph  ->  T  e.  NN0 )
6867nn0cnd 9151 . . 3  |-  ( ph  ->  T  e.  CC )
69 eqid 2157 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  s }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  s }
7069, 42pcprecl 12180 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
s  e.  ZZ  /\  s  =/=  0 ) )  ->  ( U  e. 
NN0  /\  ( P ^ U )  ||  s
) )
7170simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
s  e.  ZZ  /\  s  =/=  0 ) )  ->  U  e.  NN0 )
7263, 5, 40, 71syl12anc 1218 . . . 4  |-  ( ph  ->  U  e.  NN0 )
7372nn0cnd 9151 . . 3  |-  ( ph  ->  U  e.  CC )
74 eqid 2157 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  x }
7574, 56pcprecl 12180 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( S  e. 
NN0  /\  ( P ^ S )  ||  x
) )
7675simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  S  e.  NN0 )
7763, 13, 53, 76syl12anc 1218 . . . 4  |-  ( ph  ->  S  e.  NN0 )
7877nn0cnd 9151 . . 3  |-  ( ph  ->  S  e.  CC )
79 eqid 2157 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  t }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  t }
8079, 57pcprecl 12180 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
t  e.  ZZ  /\  t  =/=  0 ) )  ->  ( V  e. 
NN0  /\  ( P ^ V )  ||  t
) )
8180simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
t  e.  ZZ  /\  t  =/=  0 ) )  ->  V  e.  NN0 )
8263, 54, 55, 81syl12anc 1218 . . . 4  |-  ( ph  ->  V  e.  NN0 )
8382nn0cnd 9151 . . 3  |-  ( ph  ->  V  e.  CC )
8468, 73, 78, 83addsubeq4d 8242 . 2  |-  ( ph  ->  ( ( T  +  U )  =  ( S  +  V )  <-> 
( S  -  T
)  =  ( U  -  V ) ) )
8561, 84mpbid 146 1  |-  ( ph  ->  ( S  -  T
)  =  ( U  -  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128    =/= wne 2327   {crab 2439   class class class wbr 3967   ` cfv 5173  (class class class)co 5827   supcsup 6929   RRcr 7734   0cc0 7735    + caddc 7738    x. cmul 7740    < clt 7915    - cmin 8051    / cdiv 8550   NNcn 8839   2c2 8890   NN0cn0 9096   ZZcz 9173   ZZ>=cuz 9445   ^cexp 10428    || cdvds 11695   Primecprime 12000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001
This theorem is referenced by:  pceu  12186
  Copyright terms: Public domain W3C validator