ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pceulem Unicode version

Theorem pceulem 12732
Description: Lemma for pceu 12733. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
pceu.3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
pceu.4  |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
pceu.5  |-  ( ph  ->  P  e.  Prime )
pceu.6  |-  ( ph  ->  N  =/=  0 )
pceu.7  |-  ( ph  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
pceu.8  |-  ( ph  ->  N  =  ( x  /  y ) )
pceu.9  |-  ( ph  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
pceu.10  |-  ( ph  ->  N  =  ( s  /  t ) )
Assertion
Ref Expression
pceulem  |-  ( ph  ->  ( S  -  T
)  =  ( U  -  V ) )
Distinct variable groups:    n, s, t, x, y, N    P, n, s, t, x, y    S, s, t    T, s, t
Allowed substitution hints:    ph( x, y, t, n, s)    S( x, y, n)    T( x, y, n)    U( x, y, t, n, s)    V( x, y, t, n, s)

Proof of Theorem pceulem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pceu.7 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
21simprd 114 . . . . . . . . . 10  |-  ( ph  ->  y  e.  NN )
32nncnd 9085 . . . . . . . . 9  |-  ( ph  ->  y  e.  CC )
4 pceu.9 . . . . . . . . . . 11  |-  ( ph  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
54simpld 112 . . . . . . . . . 10  |-  ( ph  ->  s  e.  ZZ )
65zcnd 9531 . . . . . . . . 9  |-  ( ph  ->  s  e.  CC )
73, 6mulcomd 8129 . . . . . . . 8  |-  ( ph  ->  ( y  x.  s
)  =  ( s  x.  y ) )
8 pceu.10 . . . . . . . . . 10  |-  ( ph  ->  N  =  ( s  /  t ) )
9 pceu.8 . . . . . . . . . 10  |-  ( ph  ->  N  =  ( x  /  y ) )
108, 9eqtr3d 2242 . . . . . . . . 9  |-  ( ph  ->  ( s  /  t
)  =  ( x  /  y ) )
114simprd 114 . . . . . . . . . . 11  |-  ( ph  ->  t  e.  NN )
1211nncnd 9085 . . . . . . . . . 10  |-  ( ph  ->  t  e.  CC )
131simpld 112 . . . . . . . . . . 11  |-  ( ph  ->  x  e.  ZZ )
1413zcnd 9531 . . . . . . . . . 10  |-  ( ph  ->  x  e.  CC )
1511nnap0d 9117 . . . . . . . . . 10  |-  ( ph  ->  t #  0 )
162nnap0d 9117 . . . . . . . . . 10  |-  ( ph  ->  y #  0 )
176, 12, 14, 3, 15, 16divmuleqapd 8941 . . . . . . . . 9  |-  ( ph  ->  ( ( s  / 
t )  =  ( x  /  y )  <-> 
( s  x.  y
)  =  ( x  x.  t ) ) )
1810, 17mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( s  x.  y
)  =  ( x  x.  t ) )
197, 18eqtrd 2240 . . . . . . 7  |-  ( ph  ->  ( y  x.  s
)  =  ( x  x.  t ) )
2019breq2d 4071 . . . . . 6  |-  ( ph  ->  ( ( P ^
z )  ||  (
y  x.  s )  <-> 
( P ^ z
)  ||  ( x  x.  t ) ) )
2120rabbidv 2765 . . . . 5  |-  ( ph  ->  { z  e.  NN0  |  ( P ^ z
)  ||  ( y  x.  s ) }  =  { z  e.  NN0  |  ( P ^ z
)  ||  ( x  x.  t ) } )
22 oveq2 5975 . . . . . . 7  |-  ( n  =  z  ->  ( P ^ n )  =  ( P ^ z
) )
2322breq1d 4069 . . . . . 6  |-  ( n  =  z  ->  (
( P ^ n
)  ||  ( y  x.  s )  <->  ( P ^ z )  ||  ( y  x.  s
) ) )
2423cbvrabv 2775 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) }  =  {
z  e.  NN0  | 
( P ^ z
)  ||  ( y  x.  s ) }
2522breq1d 4069 . . . . . 6  |-  ( n  =  z  ->  (
( P ^ n
)  ||  ( x  x.  t )  <->  ( P ^ z )  ||  ( x  x.  t
) ) )
2625cbvrabv 2775 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( x  x.  t
) }  =  {
z  e.  NN0  | 
( P ^ z
)  ||  ( x  x.  t ) }
2721, 24, 263eqtr4g 2265 . . . 4  |-  ( ph  ->  { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) }  =  { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } )
2827supeq1d 7115 . . 3  |-  ( ph  ->  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
29 pceu.5 . . . 4  |-  ( ph  ->  P  e.  Prime )
302nnzd 9529 . . . 4  |-  ( ph  ->  y  e.  ZZ )
312nnne0d 9116 . . . 4  |-  ( ph  ->  y  =/=  0 )
32 pceu.6 . . . . 5  |-  ( ph  ->  N  =/=  0 )
3312, 15div0apd 8895 . . . . . . . 8  |-  ( ph  ->  ( 0  /  t
)  =  0 )
34 oveq1 5974 . . . . . . . . 9  |-  ( s  =  0  ->  (
s  /  t )  =  ( 0  / 
t ) )
3534eqeq1d 2216 . . . . . . . 8  |-  ( s  =  0  ->  (
( s  /  t
)  =  0  <->  (
0  /  t )  =  0 ) )
3633, 35syl5ibrcom 157 . . . . . . 7  |-  ( ph  ->  ( s  =  0  ->  ( s  / 
t )  =  0 ) )
378eqeq1d 2216 . . . . . . 7  |-  ( ph  ->  ( N  =  0  <-> 
( s  /  t
)  =  0 ) )
3836, 37sylibrd 169 . . . . . 6  |-  ( ph  ->  ( s  =  0  ->  N  =  0 ) )
3938necon3d 2422 . . . . 5  |-  ( ph  ->  ( N  =/=  0  ->  s  =/=  0 ) )
4032, 39mpd 13 . . . 4  |-  ( ph  ->  s  =/=  0 )
41 pcval.2 . . . . 5  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
42 pceu.3 . . . . 5  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
43 eqid 2207 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) } ,  RR ,  <  )
4441, 42, 43pcpremul 12731 . . . 4  |-  ( ( P  e.  Prime  /\  (
y  e.  ZZ  /\  y  =/=  0 )  /\  ( s  e.  ZZ  /\  s  =/=  0 ) )  ->  ( T  +  U )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  ) )
4529, 30, 31, 5, 40, 44syl122anc 1259 . . 3  |-  ( ph  ->  ( T  +  U
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  ) )
463, 16div0apd 8895 . . . . . . . 8  |-  ( ph  ->  ( 0  /  y
)  =  0 )
47 oveq1 5974 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
4847eqeq1d 2216 . . . . . . . 8  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
4946, 48syl5ibrcom 157 . . . . . . 7  |-  ( ph  ->  ( x  =  0  ->  ( x  / 
y )  =  0 ) )
509eqeq1d 2216 . . . . . . 7  |-  ( ph  ->  ( N  =  0  <-> 
( x  /  y
)  =  0 ) )
5149, 50sylibrd 169 . . . . . 6  |-  ( ph  ->  ( x  =  0  ->  N  =  0 ) )
5251necon3d 2422 . . . . 5  |-  ( ph  ->  ( N  =/=  0  ->  x  =/=  0 ) )
5332, 52mpd 13 . . . 4  |-  ( ph  ->  x  =/=  0 )
5411nnzd 9529 . . . 4  |-  ( ph  ->  t  e.  ZZ )
5511nnne0d 9116 . . . 4  |-  ( ph  ->  t  =/=  0 )
56 pcval.1 . . . . 5  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
57 pceu.4 . . . . 5  |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
58 eqid 2207 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( x  x.  t
) } ,  RR ,  <  )
5956, 57, 58pcpremul 12731 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  ( t  e.  ZZ  /\  t  =/=  0 ) )  ->  ( S  +  V )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
6029, 13, 53, 54, 55, 59syl122anc 1259 . . 3  |-  ( ph  ->  ( S  +  V
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
6128, 45, 603eqtr4d 2250 . 2  |-  ( ph  ->  ( T  +  U
)  =  ( S  +  V ) )
62 prmuz2 12568 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
6329, 62syl 14 . . . . 5  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
64 eqid 2207 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  y }
6564, 41pcprecl 12727 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  ( T  e. 
NN0  /\  ( P ^ T )  ||  y
) )
6665simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  T  e.  NN0 )
6763, 30, 31, 66syl12anc 1248 . . . 4  |-  ( ph  ->  T  e.  NN0 )
6867nn0cnd 9385 . . 3  |-  ( ph  ->  T  e.  CC )
69 eqid 2207 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  s }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  s }
7069, 42pcprecl 12727 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
s  e.  ZZ  /\  s  =/=  0 ) )  ->  ( U  e. 
NN0  /\  ( P ^ U )  ||  s
) )
7170simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
s  e.  ZZ  /\  s  =/=  0 ) )  ->  U  e.  NN0 )
7263, 5, 40, 71syl12anc 1248 . . . 4  |-  ( ph  ->  U  e.  NN0 )
7372nn0cnd 9385 . . 3  |-  ( ph  ->  U  e.  CC )
74 eqid 2207 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  x }
7574, 56pcprecl 12727 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( S  e. 
NN0  /\  ( P ^ S )  ||  x
) )
7675simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  S  e.  NN0 )
7763, 13, 53, 76syl12anc 1248 . . . 4  |-  ( ph  ->  S  e.  NN0 )
7877nn0cnd 9385 . . 3  |-  ( ph  ->  S  e.  CC )
79 eqid 2207 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  t }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  t }
8079, 57pcprecl 12727 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
t  e.  ZZ  /\  t  =/=  0 ) )  ->  ( V  e. 
NN0  /\  ( P ^ V )  ||  t
) )
8180simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
t  e.  ZZ  /\  t  =/=  0 ) )  ->  V  e.  NN0 )
8263, 54, 55, 81syl12anc 1248 . . . 4  |-  ( ph  ->  V  e.  NN0 )
8382nn0cnd 9385 . . 3  |-  ( ph  ->  V  e.  CC )
8468, 73, 78, 83addsubeq4d 8469 . 2  |-  ( ph  ->  ( ( T  +  U )  =  ( S  +  V )  <-> 
( S  -  T
)  =  ( U  -  V ) ) )
8561, 84mpbid 147 1  |-  ( ph  ->  ( S  -  T
)  =  ( U  -  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    =/= wne 2378   {crab 2490   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   supcsup 7110   RRcr 7959   0cc0 7960    + caddc 7963    x. cmul 7965    < clt 8142    - cmin 8278    / cdiv 8780   NNcn 9071   2c2 9122   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ^cexp 10720    || cdvds 12213   Primecprime 12544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545
This theorem is referenced by:  pceu  12733
  Copyright terms: Public domain W3C validator