ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pceulem Unicode version

Theorem pceulem 12248
Description: Lemma for pceu 12249. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
pceu.3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
pceu.4  |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
pceu.5  |-  ( ph  ->  P  e.  Prime )
pceu.6  |-  ( ph  ->  N  =/=  0 )
pceu.7  |-  ( ph  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
pceu.8  |-  ( ph  ->  N  =  ( x  /  y ) )
pceu.9  |-  ( ph  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
pceu.10  |-  ( ph  ->  N  =  ( s  /  t ) )
Assertion
Ref Expression
pceulem  |-  ( ph  ->  ( S  -  T
)  =  ( U  -  V ) )
Distinct variable groups:    n, s, t, x, y, N    P, n, s, t, x, y    S, s, t    T, s, t
Allowed substitution hints:    ph( x, y, t, n, s)    S( x, y, n)    T( x, y, n)    U( x, y, t, n, s)    V( x, y, t, n, s)

Proof of Theorem pceulem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pceu.7 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
21simprd 113 . . . . . . . . . 10  |-  ( ph  ->  y  e.  NN )
32nncnd 8892 . . . . . . . . 9  |-  ( ph  ->  y  e.  CC )
4 pceu.9 . . . . . . . . . . 11  |-  ( ph  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
54simpld 111 . . . . . . . . . 10  |-  ( ph  ->  s  e.  ZZ )
65zcnd 9335 . . . . . . . . 9  |-  ( ph  ->  s  e.  CC )
73, 6mulcomd 7941 . . . . . . . 8  |-  ( ph  ->  ( y  x.  s
)  =  ( s  x.  y ) )
8 pceu.10 . . . . . . . . . 10  |-  ( ph  ->  N  =  ( s  /  t ) )
9 pceu.8 . . . . . . . . . 10  |-  ( ph  ->  N  =  ( x  /  y ) )
108, 9eqtr3d 2205 . . . . . . . . 9  |-  ( ph  ->  ( s  /  t
)  =  ( x  /  y ) )
114simprd 113 . . . . . . . . . . 11  |-  ( ph  ->  t  e.  NN )
1211nncnd 8892 . . . . . . . . . 10  |-  ( ph  ->  t  e.  CC )
131simpld 111 . . . . . . . . . . 11  |-  ( ph  ->  x  e.  ZZ )
1413zcnd 9335 . . . . . . . . . 10  |-  ( ph  ->  x  e.  CC )
1511nnap0d 8924 . . . . . . . . . 10  |-  ( ph  ->  t #  0 )
162nnap0d 8924 . . . . . . . . . 10  |-  ( ph  ->  y #  0 )
176, 12, 14, 3, 15, 16divmuleqapd 8750 . . . . . . . . 9  |-  ( ph  ->  ( ( s  / 
t )  =  ( x  /  y )  <-> 
( s  x.  y
)  =  ( x  x.  t ) ) )
1810, 17mpbid 146 . . . . . . . 8  |-  ( ph  ->  ( s  x.  y
)  =  ( x  x.  t ) )
197, 18eqtrd 2203 . . . . . . 7  |-  ( ph  ->  ( y  x.  s
)  =  ( x  x.  t ) )
2019breq2d 4001 . . . . . 6  |-  ( ph  ->  ( ( P ^
z )  ||  (
y  x.  s )  <-> 
( P ^ z
)  ||  ( x  x.  t ) ) )
2120rabbidv 2719 . . . . 5  |-  ( ph  ->  { z  e.  NN0  |  ( P ^ z
)  ||  ( y  x.  s ) }  =  { z  e.  NN0  |  ( P ^ z
)  ||  ( x  x.  t ) } )
22 oveq2 5861 . . . . . . 7  |-  ( n  =  z  ->  ( P ^ n )  =  ( P ^ z
) )
2322breq1d 3999 . . . . . 6  |-  ( n  =  z  ->  (
( P ^ n
)  ||  ( y  x.  s )  <->  ( P ^ z )  ||  ( y  x.  s
) ) )
2423cbvrabv 2729 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) }  =  {
z  e.  NN0  | 
( P ^ z
)  ||  ( y  x.  s ) }
2522breq1d 3999 . . . . . 6  |-  ( n  =  z  ->  (
( P ^ n
)  ||  ( x  x.  t )  <->  ( P ^ z )  ||  ( x  x.  t
) ) )
2625cbvrabv 2729 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( x  x.  t
) }  =  {
z  e.  NN0  | 
( P ^ z
)  ||  ( x  x.  t ) }
2721, 24, 263eqtr4g 2228 . . . 4  |-  ( ph  ->  { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) }  =  { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } )
2827supeq1d 6964 . . 3  |-  ( ph  ->  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
29 pceu.5 . . . 4  |-  ( ph  ->  P  e.  Prime )
302nnzd 9333 . . . 4  |-  ( ph  ->  y  e.  ZZ )
312nnne0d 8923 . . . 4  |-  ( ph  ->  y  =/=  0 )
32 pceu.6 . . . . 5  |-  ( ph  ->  N  =/=  0 )
3312, 15div0apd 8704 . . . . . . . 8  |-  ( ph  ->  ( 0  /  t
)  =  0 )
34 oveq1 5860 . . . . . . . . 9  |-  ( s  =  0  ->  (
s  /  t )  =  ( 0  / 
t ) )
3534eqeq1d 2179 . . . . . . . 8  |-  ( s  =  0  ->  (
( s  /  t
)  =  0  <->  (
0  /  t )  =  0 ) )
3633, 35syl5ibrcom 156 . . . . . . 7  |-  ( ph  ->  ( s  =  0  ->  ( s  / 
t )  =  0 ) )
378eqeq1d 2179 . . . . . . 7  |-  ( ph  ->  ( N  =  0  <-> 
( s  /  t
)  =  0 ) )
3836, 37sylibrd 168 . . . . . 6  |-  ( ph  ->  ( s  =  0  ->  N  =  0 ) )
3938necon3d 2384 . . . . 5  |-  ( ph  ->  ( N  =/=  0  ->  s  =/=  0 ) )
4032, 39mpd 13 . . . 4  |-  ( ph  ->  s  =/=  0 )
41 pcval.2 . . . . 5  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
42 pceu.3 . . . . 5  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
43 eqid 2170 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( y  x.  s
) } ,  RR ,  <  )
4441, 42, 43pcpremul 12247 . . . 4  |-  ( ( P  e.  Prime  /\  (
y  e.  ZZ  /\  y  =/=  0 )  /\  ( s  e.  ZZ  /\  s  =/=  0 ) )  ->  ( T  +  U )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  ) )
4529, 30, 31, 5, 40, 44syl122anc 1242 . . 3  |-  ( ph  ->  ( T  +  U
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( y  x.  s ) } ,  RR ,  <  ) )
463, 16div0apd 8704 . . . . . . . 8  |-  ( ph  ->  ( 0  /  y
)  =  0 )
47 oveq1 5860 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
4847eqeq1d 2179 . . . . . . . 8  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
4946, 48syl5ibrcom 156 . . . . . . 7  |-  ( ph  ->  ( x  =  0  ->  ( x  / 
y )  =  0 ) )
509eqeq1d 2179 . . . . . . 7  |-  ( ph  ->  ( N  =  0  <-> 
( x  /  y
)  =  0 ) )
5149, 50sylibrd 168 . . . . . 6  |-  ( ph  ->  ( x  =  0  ->  N  =  0 ) )
5251necon3d 2384 . . . . 5  |-  ( ph  ->  ( N  =/=  0  ->  x  =/=  0 ) )
5332, 52mpd 13 . . . 4  |-  ( ph  ->  x  =/=  0 )
5411nnzd 9333 . . . 4  |-  ( ph  ->  t  e.  ZZ )
5511nnne0d 8923 . . . 4  |-  ( ph  ->  t  =/=  0 )
56 pcval.1 . . . . 5  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
57 pceu.4 . . . . 5  |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
58 eqid 2170 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( x  x.  t
) } ,  RR ,  <  )
5956, 57, 58pcpremul 12247 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  ( t  e.  ZZ  /\  t  =/=  0 ) )  ->  ( S  +  V )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
6029, 13, 53, 54, 55, 59syl122anc 1242 . . 3  |-  ( ph  ->  ( S  +  V
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( x  x.  t ) } ,  RR ,  <  ) )
6128, 45, 603eqtr4d 2213 . 2  |-  ( ph  ->  ( T  +  U
)  =  ( S  +  V ) )
62 prmuz2 12085 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
6329, 62syl 14 . . . . 5  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
64 eqid 2170 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  y }
6564, 41pcprecl 12243 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  ( T  e. 
NN0  /\  ( P ^ T )  ||  y
) )
6665simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  T  e.  NN0 )
6763, 30, 31, 66syl12anc 1231 . . . 4  |-  ( ph  ->  T  e.  NN0 )
6867nn0cnd 9190 . . 3  |-  ( ph  ->  T  e.  CC )
69 eqid 2170 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  s }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  s }
7069, 42pcprecl 12243 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
s  e.  ZZ  /\  s  =/=  0 ) )  ->  ( U  e. 
NN0  /\  ( P ^ U )  ||  s
) )
7170simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
s  e.  ZZ  /\  s  =/=  0 ) )  ->  U  e.  NN0 )
7263, 5, 40, 71syl12anc 1231 . . . 4  |-  ( ph  ->  U  e.  NN0 )
7372nn0cnd 9190 . . 3  |-  ( ph  ->  U  e.  CC )
74 eqid 2170 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  x }
7574, 56pcprecl 12243 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( S  e. 
NN0  /\  ( P ^ S )  ||  x
) )
7675simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  S  e.  NN0 )
7763, 13, 53, 76syl12anc 1231 . . . 4  |-  ( ph  ->  S  e.  NN0 )
7877nn0cnd 9190 . . 3  |-  ( ph  ->  S  e.  CC )
79 eqid 2170 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  t }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  t }
8079, 57pcprecl 12243 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
t  e.  ZZ  /\  t  =/=  0 ) )  ->  ( V  e. 
NN0  /\  ( P ^ V )  ||  t
) )
8180simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
t  e.  ZZ  /\  t  =/=  0 ) )  ->  V  e.  NN0 )
8263, 54, 55, 81syl12anc 1231 . . . 4  |-  ( ph  ->  V  e.  NN0 )
8382nn0cnd 9190 . . 3  |-  ( ph  ->  V  e.  CC )
8468, 73, 78, 83addsubeq4d 8281 . 2  |-  ( ph  ->  ( ( T  +  U )  =  ( S  +  V )  <-> 
( S  -  T
)  =  ( U  -  V ) ) )
8561, 84mpbid 146 1  |-  ( ph  ->  ( S  -  T
)  =  ( U  -  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    =/= wne 2340   {crab 2452   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   supcsup 6959   RRcr 7773   0cc0 7774    + caddc 7777    x. cmul 7779    < clt 7954    - cmin 8090    / cdiv 8589   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ^cexp 10475    || cdvds 11749   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062
This theorem is referenced by:  pceu  12249
  Copyright terms: Public domain W3C validator