| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pceulem | Unicode version | ||
| Description: Lemma for pceu 12464. (Contributed by Mario Carneiro, 23-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| pcval.1 | 
 | 
| pcval.2 | 
 | 
| pceu.3 | 
 | 
| pceu.4 | 
 | 
| pceu.5 | 
 | 
| pceu.6 | 
 | 
| pceu.7 | 
 | 
| pceu.8 | 
 | 
| pceu.9 | 
 | 
| pceu.10 | 
 | 
| Ref | Expression | 
|---|---|
| pceulem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pceu.7 | 
. . . . . . . . . . 11
 | |
| 2 | 1 | simprd 114 | 
. . . . . . . . . 10
 | 
| 3 | 2 | nncnd 9004 | 
. . . . . . . . 9
 | 
| 4 | pceu.9 | 
. . . . . . . . . . 11
 | |
| 5 | 4 | simpld 112 | 
. . . . . . . . . 10
 | 
| 6 | 5 | zcnd 9449 | 
. . . . . . . . 9
 | 
| 7 | 3, 6 | mulcomd 8048 | 
. . . . . . . 8
 | 
| 8 | pceu.10 | 
. . . . . . . . . 10
 | |
| 9 | pceu.8 | 
. . . . . . . . . 10
 | |
| 10 | 8, 9 | eqtr3d 2231 | 
. . . . . . . . 9
 | 
| 11 | 4 | simprd 114 | 
. . . . . . . . . . 11
 | 
| 12 | 11 | nncnd 9004 | 
. . . . . . . . . 10
 | 
| 13 | 1 | simpld 112 | 
. . . . . . . . . . 11
 | 
| 14 | 13 | zcnd 9449 | 
. . . . . . . . . 10
 | 
| 15 | 11 | nnap0d 9036 | 
. . . . . . . . . 10
 | 
| 16 | 2 | nnap0d 9036 | 
. . . . . . . . . 10
 | 
| 17 | 6, 12, 14, 3, 15, 16 | divmuleqapd 8860 | 
. . . . . . . . 9
 | 
| 18 | 10, 17 | mpbid 147 | 
. . . . . . . 8
 | 
| 19 | 7, 18 | eqtrd 2229 | 
. . . . . . 7
 | 
| 20 | 19 | breq2d 4045 | 
. . . . . 6
 | 
| 21 | 20 | rabbidv 2752 | 
. . . . 5
 | 
| 22 | oveq2 5930 | 
. . . . . . 7
 | |
| 23 | 22 | breq1d 4043 | 
. . . . . 6
 | 
| 24 | 23 | cbvrabv 2762 | 
. . . . 5
 | 
| 25 | 22 | breq1d 4043 | 
. . . . . 6
 | 
| 26 | 25 | cbvrabv 2762 | 
. . . . 5
 | 
| 27 | 21, 24, 26 | 3eqtr4g 2254 | 
. . . 4
 | 
| 28 | 27 | supeq1d 7053 | 
. . 3
 | 
| 29 | pceu.5 | 
. . . 4
 | |
| 30 | 2 | nnzd 9447 | 
. . . 4
 | 
| 31 | 2 | nnne0d 9035 | 
. . . 4
 | 
| 32 | pceu.6 | 
. . . . 5
 | |
| 33 | 12, 15 | div0apd 8814 | 
. . . . . . . 8
 | 
| 34 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 35 | 34 | eqeq1d 2205 | 
. . . . . . . 8
 | 
| 36 | 33, 35 | syl5ibrcom 157 | 
. . . . . . 7
 | 
| 37 | 8 | eqeq1d 2205 | 
. . . . . . 7
 | 
| 38 | 36, 37 | sylibrd 169 | 
. . . . . 6
 | 
| 39 | 38 | necon3d 2411 | 
. . . . 5
 | 
| 40 | 32, 39 | mpd 13 | 
. . . 4
 | 
| 41 | pcval.2 | 
. . . . 5
 | |
| 42 | pceu.3 | 
. . . . 5
 | |
| 43 | eqid 2196 | 
. . . . 5
 | |
| 44 | 41, 42, 43 | pcpremul 12462 | 
. . . 4
 | 
| 45 | 29, 30, 31, 5, 40, 44 | syl122anc 1258 | 
. . 3
 | 
| 46 | 3, 16 | div0apd 8814 | 
. . . . . . . 8
 | 
| 47 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 48 | 47 | eqeq1d 2205 | 
. . . . . . . 8
 | 
| 49 | 46, 48 | syl5ibrcom 157 | 
. . . . . . 7
 | 
| 50 | 9 | eqeq1d 2205 | 
. . . . . . 7
 | 
| 51 | 49, 50 | sylibrd 169 | 
. . . . . 6
 | 
| 52 | 51 | necon3d 2411 | 
. . . . 5
 | 
| 53 | 32, 52 | mpd 13 | 
. . . 4
 | 
| 54 | 11 | nnzd 9447 | 
. . . 4
 | 
| 55 | 11 | nnne0d 9035 | 
. . . 4
 | 
| 56 | pcval.1 | 
. . . . 5
 | |
| 57 | pceu.4 | 
. . . . 5
 | |
| 58 | eqid 2196 | 
. . . . 5
 | |
| 59 | 56, 57, 58 | pcpremul 12462 | 
. . . 4
 | 
| 60 | 29, 13, 53, 54, 55, 59 | syl122anc 1258 | 
. . 3
 | 
| 61 | 28, 45, 60 | 3eqtr4d 2239 | 
. 2
 | 
| 62 | prmuz2 12299 | 
. . . . . 6
 | |
| 63 | 29, 62 | syl 14 | 
. . . . 5
 | 
| 64 | eqid 2196 | 
. . . . . . 7
 | |
| 65 | 64, 41 | pcprecl 12458 | 
. . . . . 6
 | 
| 66 | 65 | simpld 112 | 
. . . . 5
 | 
| 67 | 63, 30, 31, 66 | syl12anc 1247 | 
. . . 4
 | 
| 68 | 67 | nn0cnd 9304 | 
. . 3
 | 
| 69 | eqid 2196 | 
. . . . . . 7
 | |
| 70 | 69, 42 | pcprecl 12458 | 
. . . . . 6
 | 
| 71 | 70 | simpld 112 | 
. . . . 5
 | 
| 72 | 63, 5, 40, 71 | syl12anc 1247 | 
. . . 4
 | 
| 73 | 72 | nn0cnd 9304 | 
. . 3
 | 
| 74 | eqid 2196 | 
. . . . . . 7
 | |
| 75 | 74, 56 | pcprecl 12458 | 
. . . . . 6
 | 
| 76 | 75 | simpld 112 | 
. . . . 5
 | 
| 77 | 63, 13, 53, 76 | syl12anc 1247 | 
. . . 4
 | 
| 78 | 77 | nn0cnd 9304 | 
. . 3
 | 
| 79 | eqid 2196 | 
. . . . . . 7
 | |
| 80 | 79, 57 | pcprecl 12458 | 
. . . . . 6
 | 
| 81 | 80 | simpld 112 | 
. . . . 5
 | 
| 82 | 63, 54, 55, 81 | syl12anc 1247 | 
. . . 4
 | 
| 83 | 82 | nn0cnd 9304 | 
. . 3
 | 
| 84 | 68, 73, 78, 83 | addsubeq4d 8388 | 
. 2
 | 
| 85 | 61, 84 | mpbid 147 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-2o 6475 df-er 6592 df-en 6800 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 df-prm 12276 | 
| This theorem is referenced by: pceu 12464 | 
| Copyright terms: Public domain | W3C validator |