ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvnz Unicode version

Theorem grpinvnz 13478
Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b  |-  B  =  ( Base `  G
)
grpinvnzcl.z  |-  .0.  =  ( 0g `  G )
grpinvnzcl.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvnz  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( N `  X
)  =/=  .0.  )

Proof of Theorem grpinvnz
StepHypRef Expression
1 fveq2 5589 . . . . . 6  |-  ( ( N `  X )  =  .0.  ->  ( N `  ( N `  X ) )  =  ( N `  .0.  ) )
21adantl 277 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  ( N `  ( N `  X
) )  =  ( N `  .0.  )
)
3 grpinvnzcl.b . . . . . . 7  |-  B  =  ( Base `  G
)
4 grpinvnzcl.n . . . . . . 7  |-  N  =  ( invg `  G )
53, 4grpinvinv 13474 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  =  X )
65adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  ( N `  ( N `  X
) )  =  X )
7 grpinvnzcl.z . . . . . . 7  |-  .0.  =  ( 0g `  G )
87, 4grpinvid 13467 . . . . . 6  |-  ( G  e.  Grp  ->  ( N `  .0.  )  =  .0.  )
98ad2antrr 488 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  ( N `  .0.  )  =  .0.  )
102, 6, 93eqtr3d 2247 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  X  =  .0.  )
1110ex 115 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  =  .0. 
->  X  =  .0.  ) )
1211necon3d 2421 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  =/=  .0.  ->  ( N `  X
)  =/=  .0.  )
)
13123impia 1203 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( N `  X
)  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   ` cfv 5280   Basecbs 12907   0gc0g 13163   Grpcgrp 13407   invgcminusg 13408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411
This theorem is referenced by:  grpinvnzcl  13479
  Copyright terms: Public domain W3C validator