ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvnz Unicode version

Theorem grpinvnz 12947
Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b  |-  B  =  ( Base `  G
)
grpinvnzcl.z  |-  .0.  =  ( 0g `  G )
grpinvnzcl.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvnz  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( N `  X
)  =/=  .0.  )

Proof of Theorem grpinvnz
StepHypRef Expression
1 fveq2 5517 . . . . . 6  |-  ( ( N `  X )  =  .0.  ->  ( N `  ( N `  X ) )  =  ( N `  .0.  ) )
21adantl 277 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  ( N `  ( N `  X
) )  =  ( N `  .0.  )
)
3 grpinvnzcl.b . . . . . . 7  |-  B  =  ( Base `  G
)
4 grpinvnzcl.n . . . . . . 7  |-  N  =  ( invg `  G )
53, 4grpinvinv 12943 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  =  X )
65adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  ( N `  ( N `  X
) )  =  X )
7 grpinvnzcl.z . . . . . . 7  |-  .0.  =  ( 0g `  G )
87, 4grpinvid 12936 . . . . . 6  |-  ( G  e.  Grp  ->  ( N `  .0.  )  =  .0.  )
98ad2antrr 488 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  ( N `  .0.  )  =  .0.  )
102, 6, 93eqtr3d 2218 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( N `  X )  =  .0.  )  ->  X  =  .0.  )
1110ex 115 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  =  .0. 
->  X  =  .0.  ) )
1211necon3d 2391 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  =/=  .0.  ->  ( N `  X
)  =/=  .0.  )
)
13123impia 1200 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( N `  X
)  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   ` cfv 5218   Basecbs 12465   0gc0g 12711   Grpcgrp 12883   invgcminusg 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-plusg 12552  df-0g 12713  df-mgm 12781  df-sgrp 12814  df-mnd 12824  df-grp 12886  df-minusg 12887
This theorem is referenced by:  grpinvnzcl  12948
  Copyright terms: Public domain W3C validator