ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelcnvg Unicode version

Theorem opelcnvg 4842
Description: Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
opelcnvg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )

Proof of Theorem opelcnvg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4033 . . 3  |-  ( x  =  A  ->  (
y R x  <->  y R A ) )
2 breq1 4032 . . 3  |-  ( y  =  B  ->  (
y R A  <->  B R A ) )
3 df-cnv 4667 . . 3  |-  `' R  =  { <. x ,  y
>.  |  y R x }
41, 2, 3brabg 4299 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )
5 df-br 4030 . 2  |-  ( A `' R B  <->  <. A ,  B >.  e.  `' R
)
6 df-br 4030 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
74, 5, 63bitr3g 222 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   <.cop 3621   class class class wbr 4029   `'ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667
This theorem is referenced by:  brcnvg  4843  opelcnv  4844  fvimacnv  5673  cnvf1olem  6277  brtposg  6307  xrlenlt  8084
  Copyright terms: Public domain W3C validator