ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelcnvg Unicode version

Theorem opelcnvg 4902
Description: Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
opelcnvg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )

Proof of Theorem opelcnvg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4087 . . 3  |-  ( x  =  A  ->  (
y R x  <->  y R A ) )
2 breq1 4086 . . 3  |-  ( y  =  B  ->  (
y R A  <->  B R A ) )
3 df-cnv 4727 . . 3  |-  `' R  =  { <. x ,  y
>.  |  y R x }
41, 2, 3brabg 4357 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )
5 df-br 4084 . 2  |-  ( A `' R B  <->  <. A ,  B >.  e.  `' R
)
6 df-br 4084 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
74, 5, 63bitr3g 222 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   <.cop 3669   class class class wbr 4083   `'ccnv 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-cnv 4727
This theorem is referenced by:  brcnvg  4903  opelcnv  4904  fvimacnv  5750  cnvf1olem  6370  brtposg  6400  xrlenlt  8211
  Copyright terms: Public domain W3C validator