ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelcnvg Unicode version

Theorem opelcnvg 4859
Description: Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
opelcnvg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )

Proof of Theorem opelcnvg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4049 . . 3  |-  ( x  =  A  ->  (
y R x  <->  y R A ) )
2 breq1 4048 . . 3  |-  ( y  =  B  ->  (
y R A  <->  B R A ) )
3 df-cnv 4684 . . 3  |-  `' R  =  { <. x ,  y
>.  |  y R x }
41, 2, 3brabg 4316 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )
5 df-br 4046 . 2  |-  ( A `' R B  <->  <. A ,  B >.  e.  `' R
)
6 df-br 4046 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
74, 5, 63bitr3g 222 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   <.cop 3636   class class class wbr 4045   `'ccnv 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-cnv 4684
This theorem is referenced by:  brcnvg  4860  opelcnv  4861  fvimacnv  5697  cnvf1olem  6312  brtposg  6342  xrlenlt  8139
  Copyright terms: Public domain W3C validator