ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelcnvg Unicode version

Theorem opelcnvg 4679
Description: Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
opelcnvg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )

Proof of Theorem opelcnvg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3899 . . 3  |-  ( x  =  A  ->  (
y R x  <->  y R A ) )
2 breq1 3898 . . 3  |-  ( y  =  B  ->  (
y R A  <->  B R A ) )
3 df-cnv 4507 . . 3  |-  `' R  =  { <. x ,  y
>.  |  y R x }
41, 2, 3brabg 4151 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )
5 df-br 3896 . 2  |-  ( A `' R B  <->  <. A ,  B >.  e.  `' R
)
6 df-br 3896 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
74, 5, 63bitr3g 221 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1463   <.cop 3496   class class class wbr 3895   `'ccnv 4498
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-cnv 4507
This theorem is referenced by:  brcnvg  4680  opelcnv  4681  fvimacnv  5489  cnvf1olem  6075  brtposg  6105  xrlenlt  7753
  Copyright terms: Public domain W3C validator