ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodv2 Unicode version

Theorem ovmpodv2 6138
Description: Alternate deduction version of ovmpo 6140, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodv2.1  |-  ( ph  ->  A  e.  C )
ovmpodv2.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  D )
ovmpodv2.3  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  e.  V )
ovmpodv2.4  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
Assertion
Ref Expression
ovmpodv2  |-  ( ph  ->  ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ( A F B )  =  S ) )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y    x, S, y
Allowed substitution hints:    C( x, y)    D( x, y)    R( x, y)    F( x, y)    V( x, y)

Proof of Theorem ovmpodv2
StepHypRef Expression
1 eqidd 2230 . . 3  |-  ( ph  ->  ( x  e.  C ,  y  e.  D  |->  R )  =  ( x  e.  C , 
y  e.  D  |->  R ) )
2 ovmpodv2.1 . . . 4  |-  ( ph  ->  A  e.  C )
3 ovmpodv2.2 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  B  e.  D )
4 ovmpodv2.3 . . . 4  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  e.  V )
5 ovmpodv2.4 . . . . . 6  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
65eqeq2d 2241 . . . . 5  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A ( x  e.  C , 
y  e.  D  |->  R ) B )  =  R  <->  ( A ( x  e.  C , 
y  e.  D  |->  R ) B )  =  S ) )
76biimpd 144 . . . 4  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A ( x  e.  C , 
y  e.  D  |->  R ) B )  =  R  ->  ( A
( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
8 nfmpo1 6071 . . . 4  |-  F/_ x
( x  e.  C ,  y  e.  D  |->  R )
9 nfcv 2372 . . . . . 6  |-  F/_ x A
10 nfcv 2372 . . . . . 6  |-  F/_ x B
119, 8, 10nfov 6031 . . . . 5  |-  F/_ x
( A ( x  e.  C ,  y  e.  D  |->  R ) B )
1211nfeq1 2382 . . . 4  |-  F/ x
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S
13 nfmpo2 6072 . . . 4  |-  F/_ y
( x  e.  C ,  y  e.  D  |->  R )
14 nfcv 2372 . . . . . 6  |-  F/_ y A
15 nfcv 2372 . . . . . 6  |-  F/_ y B
1614, 13, 15nfov 6031 . . . . 5  |-  F/_ y
( A ( x  e.  C ,  y  e.  D  |->  R ) B )
1716nfeq1 2382 . . . 4  |-  F/ y ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S
182, 3, 4, 7, 8, 12, 13, 17ovmpodf 6136 . . 3  |-  ( ph  ->  ( ( x  e.  C ,  y  e.  D  |->  R )  =  ( x  e.  C ,  y  e.  D  |->  R )  ->  ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
191, 18mpd 13 . 2  |-  ( ph  ->  ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S )
20 oveq 6007 . . 3  |-  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  -> 
( A F B )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
2120eqeq1d 2238 . 2  |-  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  -> 
( ( A F B )  =  S  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
2219, 21syl5ibrcom 157 1  |-  ( ph  ->  ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ( A F B )  =  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200  (class class class)co 6001    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator