Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovmpodv2 | Unicode version |
Description: Alternate deduction version of ovmpo 5977, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
ovmpodv2.1 | |
ovmpodv2.2 | |
ovmpodv2.3 | |
ovmpodv2.4 |
Ref | Expression |
---|---|
ovmpodv2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2166 | . . 3 | |
2 | ovmpodv2.1 | . . . 4 | |
3 | ovmpodv2.2 | . . . 4 | |
4 | ovmpodv2.3 | . . . 4 | |
5 | ovmpodv2.4 | . . . . . 6 | |
6 | 5 | eqeq2d 2177 | . . . . 5 |
7 | 6 | biimpd 143 | . . . 4 |
8 | nfmpo1 5909 | . . . 4 | |
9 | nfcv 2308 | . . . . . 6 | |
10 | nfcv 2308 | . . . . . 6 | |
11 | 9, 8, 10 | nfov 5872 | . . . . 5 |
12 | 11 | nfeq1 2318 | . . . 4 |
13 | nfmpo2 5910 | . . . 4 | |
14 | nfcv 2308 | . . . . . 6 | |
15 | nfcv 2308 | . . . . . 6 | |
16 | 14, 13, 15 | nfov 5872 | . . . . 5 |
17 | 16 | nfeq1 2318 | . . . 4 |
18 | 2, 3, 4, 7, 8, 12, 13, 17 | ovmpodf 5973 | . . 3 |
19 | 1, 18 | mpd 13 | . 2 |
20 | oveq 5848 | . . 3 | |
21 | 20 | eqeq1d 2174 | . 2 |
22 | 19, 21 | syl5ibrcom 156 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 (class class class)co 5842 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |