ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfwrd Unicode version

Theorem nfwrd 11086
Description: Hypothesis builder for Word  S. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
nfwrd.1  |-  F/_ x S
Assertion
Ref Expression
nfwrd  |-  F/_ xWord  S

Proof of Theorem nfwrd
Dummy variables  w  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 11059 . 2  |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
2 nfcv 2372 . . . 4  |-  F/_ x NN0
3 nfcv 2372 . . . . 5  |-  F/_ x w
4 nfcv 2372 . . . . 5  |-  F/_ x
( 0..^ l )
5 nfwrd.1 . . . . 5  |-  F/_ x S
63, 4, 5nff 5466 . . . 4  |-  F/ x  w : ( 0..^ l ) --> S
72, 6nfrexw 2569 . . 3  |-  F/ x E. l  e.  NN0  w : ( 0..^ l ) --> S
87nfab 2377 . 2  |-  F/_ x { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
91, 8nfcxfr 2369 1  |-  F/_ xWord  S
Colors of variables: wff set class
Syntax hints:   {cab 2215   F/_wnfc 2359   E.wrex 2509   -->wf 5310  (class class class)co 5994   0cc0 7987   NN0cn0 9357  ..^cfzo 10326  Word cword 11058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-fun 5316  df-fn 5317  df-f 5318  df-word 11059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator