ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfwrd Unicode version

Theorem nfwrd 10948
Description: Hypothesis builder for Word  S. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
nfwrd.1  |-  F/_ x S
Assertion
Ref Expression
nfwrd  |-  F/_ xWord  S

Proof of Theorem nfwrd
Dummy variables  w  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 10921 . 2  |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
2 nfcv 2339 . . . 4  |-  F/_ x NN0
3 nfcv 2339 . . . . 5  |-  F/_ x w
4 nfcv 2339 . . . . 5  |-  F/_ x
( 0..^ l )
5 nfwrd.1 . . . . 5  |-  F/_ x S
63, 4, 5nff 5404 . . . 4  |-  F/ x  w : ( 0..^ l ) --> S
72, 6nfrexw 2536 . . 3  |-  F/ x E. l  e.  NN0  w : ( 0..^ l ) --> S
87nfab 2344 . 2  |-  F/_ x { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
91, 8nfcxfr 2336 1  |-  F/_ xWord  S
Colors of variables: wff set class
Syntax hints:   {cab 2182   F/_wnfc 2326   E.wrex 2476   -->wf 5254  (class class class)co 5922   0cc0 7877   NN0cn0 9246  ..^cfzo 10214  Word cword 10920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262  df-word 10921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator