ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbwrdg Unicode version

Theorem csbwrdg 10949
Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
csbwrdg  |-  ( S  e.  V  ->  [_ S  /  x ]_Word  x  = Word  S )
Distinct variable groups:    x, S    x, V

Proof of Theorem csbwrdg
Dummy variables  l  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 10921 . . 3  |- Word  x  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }
21csbeq2i 3111 . 2  |-  [_ S  /  x ]_Word  x  =  [_ S  /  x ]_ { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }
3 sbcrex 3069 . . . . 5  |-  ( [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x  <->  E. l  e.  NN0  [. S  /  x ]. w : ( 0..^ l ) --> x )
4 sbcfg 5406 . . . . . . 7  |-  ( S  e.  V  ->  ( [. S  /  x ]. w : ( 0..^ l ) --> x  <->  [_ S  /  x ]_ w : [_ S  /  x ]_ (
0..^ l ) --> [_ S  /  x ]_ x ) )
5 csbconstg 3098 . . . . . . . 8  |-  ( S  e.  V  ->  [_ S  /  x ]_ w  =  w )
6 csbconstg 3098 . . . . . . . 8  |-  ( S  e.  V  ->  [_ S  /  x ]_ ( 0..^ l )  =  ( 0..^ l ) )
7 csbvarg 3112 . . . . . . . 8  |-  ( S  e.  V  ->  [_ S  /  x ]_ x  =  S )
85, 6, 7feq123d 5398 . . . . . . 7  |-  ( S  e.  V  ->  ( [_ S  /  x ]_ w : [_ S  /  x ]_ ( 0..^ l ) --> [_ S  /  x ]_ x  <->  w :
( 0..^ l ) --> S ) )
94, 8bitrd 188 . . . . . 6  |-  ( S  e.  V  ->  ( [. S  /  x ]. w : ( 0..^ l ) --> x  <->  w :
( 0..^ l ) --> S ) )
109rexbidv 2498 . . . . 5  |-  ( S  e.  V  ->  ( E. l  e.  NN0  [. S  /  x ]. w : ( 0..^ l ) --> x  <->  E. l  e.  NN0  w : ( 0..^ l ) --> S ) )
113, 10bitrid 192 . . . 4  |-  ( S  e.  V  ->  ( [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x  <->  E. l  e.  NN0  w : ( 0..^ l ) --> S ) )
1211abbidv 2314 . . 3  |-  ( S  e.  V  ->  { w  |  [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x }  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S } )
13 csbabg 3146 . . 3  |-  ( S  e.  V  ->  [_ S  /  x ]_ { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }  =  { w  |  [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x } )
14 df-word 10921 . . . 4  |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
1514a1i 9 . . 3  |-  ( S  e.  V  -> Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S } )
1612, 13, 153eqtr4d 2239 . 2  |-  ( S  e.  V  ->  [_ S  /  x ]_ { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }  = Word  S )
172, 16eqtrid 2241 1  |-  ( S  e.  V  ->  [_ S  /  x ]_Word  x  = Word  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   [.wsbc 2989   [_csb 3084   -->wf 5254  (class class class)co 5922   0cc0 7877   NN0cn0 9246  ..^cfzo 10214  Word cword 10920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262  df-word 10921
This theorem is referenced by:  elovmpowrd  10961
  Copyright terms: Public domain W3C validator