ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbwrdg Unicode version

Theorem csbwrdg 11040
Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
csbwrdg  |-  ( S  e.  V  ->  [_ S  /  x ]_Word  x  = Word  S )
Distinct variable groups:    x, S    x, V

Proof of Theorem csbwrdg
Dummy variables  l  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 11012 . . 3  |- Word  x  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }
21csbeq2i 3124 . 2  |-  [_ S  /  x ]_Word  x  =  [_ S  /  x ]_ { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }
3 sbcrex 3082 . . . . 5  |-  ( [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x  <->  E. l  e.  NN0  [. S  /  x ]. w : ( 0..^ l ) --> x )
4 sbcfg 5433 . . . . . . 7  |-  ( S  e.  V  ->  ( [. S  /  x ]. w : ( 0..^ l ) --> x  <->  [_ S  /  x ]_ w : [_ S  /  x ]_ (
0..^ l ) --> [_ S  /  x ]_ x ) )
5 csbconstg 3111 . . . . . . . 8  |-  ( S  e.  V  ->  [_ S  /  x ]_ w  =  w )
6 csbconstg 3111 . . . . . . . 8  |-  ( S  e.  V  ->  [_ S  /  x ]_ ( 0..^ l )  =  ( 0..^ l ) )
7 csbvarg 3125 . . . . . . . 8  |-  ( S  e.  V  ->  [_ S  /  x ]_ x  =  S )
85, 6, 7feq123d 5425 . . . . . . 7  |-  ( S  e.  V  ->  ( [_ S  /  x ]_ w : [_ S  /  x ]_ ( 0..^ l ) --> [_ S  /  x ]_ x  <->  w :
( 0..^ l ) --> S ) )
94, 8bitrd 188 . . . . . 6  |-  ( S  e.  V  ->  ( [. S  /  x ]. w : ( 0..^ l ) --> x  <->  w :
( 0..^ l ) --> S ) )
109rexbidv 2508 . . . . 5  |-  ( S  e.  V  ->  ( E. l  e.  NN0  [. S  /  x ]. w : ( 0..^ l ) --> x  <->  E. l  e.  NN0  w : ( 0..^ l ) --> S ) )
113, 10bitrid 192 . . . 4  |-  ( S  e.  V  ->  ( [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x  <->  E. l  e.  NN0  w : ( 0..^ l ) --> S ) )
1211abbidv 2324 . . 3  |-  ( S  e.  V  ->  { w  |  [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x }  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S } )
13 csbabg 3159 . . 3  |-  ( S  e.  V  ->  [_ S  /  x ]_ { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }  =  { w  |  [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x } )
14 df-word 11012 . . . 4  |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
1514a1i 9 . . 3  |-  ( S  e.  V  -> Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S } )
1612, 13, 153eqtr4d 2249 . 2  |-  ( S  e.  V  ->  [_ S  /  x ]_ { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }  = Word  S )
172, 16eqtrid 2251 1  |-  ( S  e.  V  ->  [_ S  /  x ]_Word  x  = Word  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   {cab 2192   E.wrex 2486   [.wsbc 3002   [_csb 3097   -->wf 5275  (class class class)co 5956   0cc0 7940   NN0cn0 9310  ..^cfzo 10279  Word cword 11011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-id 4347  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-fun 5281  df-fn 5282  df-f 5283  df-word 11012
This theorem is referenced by:  elovmpowrd  11052
  Copyright terms: Public domain W3C validator