| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfwrd | GIF version | ||
| Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| nfwrd.1 | ⊢ Ⅎ𝑥𝑆 |
| Ref | Expression |
|---|---|
| nfwrd | ⊢ Ⅎ𝑥Word 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word 11059 | . 2 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
| 2 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥ℕ0 | |
| 3 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 4 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥(0..^𝑙) | |
| 5 | nfwrd.1 | . . . . 5 ⊢ Ⅎ𝑥𝑆 | |
| 6 | 3, 4, 5 | nff 5466 | . . . 4 ⊢ Ⅎ𝑥 𝑤:(0..^𝑙)⟶𝑆 |
| 7 | 2, 6 | nfrexw 2569 | . . 3 ⊢ Ⅎ𝑥∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 |
| 8 | 7 | nfab 2377 | . 2 ⊢ Ⅎ𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
| 9 | 1, 8 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥Word 𝑆 |
| Colors of variables: wff set class |
| Syntax hints: {cab 2215 Ⅎwnfc 2359 ∃wrex 2509 ⟶wf 5310 (class class class)co 5994 0cc0 7987 ℕ0cn0 9357 ..^cfzo 10326 Word cword 11058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-fun 5316 df-fn 5317 df-f 5318 df-word 11059 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |