| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfwrd | GIF version | ||
| Description: Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| nfwrd.1 | ⊢ Ⅎ𝑥𝑆 |
| Ref | Expression |
|---|---|
| nfwrd | ⊢ Ⅎ𝑥Word 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word 11012 | . 2 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
| 2 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑥ℕ0 | |
| 3 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 4 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑥(0..^𝑙) | |
| 5 | nfwrd.1 | . . . . 5 ⊢ Ⅎ𝑥𝑆 | |
| 6 | 3, 4, 5 | nff 5431 | . . . 4 ⊢ Ⅎ𝑥 𝑤:(0..^𝑙)⟶𝑆 |
| 7 | 2, 6 | nfrexw 2546 | . . 3 ⊢ Ⅎ𝑥∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 |
| 8 | 7 | nfab 2354 | . 2 ⊢ Ⅎ𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
| 9 | 1, 8 | nfcxfr 2346 | 1 ⊢ Ⅎ𝑥Word 𝑆 |
| Colors of variables: wff set class |
| Syntax hints: {cab 2192 Ⅎwnfc 2336 ∃wrex 2486 ⟶wf 5275 (class class class)co 5956 0cc0 7940 ℕ0cn0 9310 ..^cfzo 10279 Word cword 11011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-opab 4113 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-fun 5281 df-fn 5282 df-f 5283 df-word 11012 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |