ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrexw Unicode version

Theorem nfrexw 2536
Description: Not-free for restricted existential quantification where  x and  y are distinct. See nfrexya 2538 for a version with  y and 
A distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
Hypotheses
Ref Expression
nfralxy.1  |-  F/_ x A
nfralxy.2  |-  F/ x ph
Assertion
Ref Expression
nfrexw  |-  F/ x E. y  e.  A  ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem nfrexw
StepHypRef Expression
1 nftru 1480 . . 3  |-  F/ y T.
2 nfralxy.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfralxy.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfrexdxy 2531 . 2  |-  ( T. 
->  F/ x E. y  e.  A  ph )
76mptru 1373 1  |-  F/ x E. y  e.  A  ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1365   F/wnf 1474   F/_wnfc 2326   E.wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481
This theorem is referenced by:  r19.12  2603  sbcrext  3067  nfuni  3845  nfiunxy  3942  rexxpf  4813  abrexex2g  6177  abrexex2  6181  nfrecs  6365  nfwrd  10948  fimaxre2  11376  nfsum  11506  nfcprod1  11703  nfcprod  11704  bezoutlemmain  12141  ctiunctlemfo  12632  bj-findis  15592  strcollnfALT  15599
  Copyright terms: Public domain W3C validator