ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0i Unicode version

Theorem nnnn0i 9338
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.)
Hypothesis
Ref Expression
nnnn0.1  |-  N  e.  NN
Assertion
Ref Expression
nnnn0i  |-  N  e. 
NN0

Proof of Theorem nnnn0i
StepHypRef Expression
1 nnnn0.1 . 2  |-  N  e.  NN
2 nnnn0 9337 . 2  |-  ( N  e.  NN  ->  N  e.  NN0 )
31, 2ax-mp 5 1  |-  N  e. 
NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   NNcn 9071   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-n0 9331
This theorem is referenced by:  1nn0  9346  2nn0  9347  3nn0  9348  4nn0  9349  5nn0  9350  6nn0  9351  7nn0  9352  8nn0  9353  9nn0  9354  numlt  9563  declei  9574  numlti  9575  pockthi  12796  dec5dvds2  12851  modxp1i  12856
  Copyright terms: Public domain W3C validator