ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0i Unicode version

Theorem nnnn0i 9257
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.)
Hypothesis
Ref Expression
nnnn0.1  |-  N  e.  NN
Assertion
Ref Expression
nnnn0i  |-  N  e. 
NN0

Proof of Theorem nnnn0i
StepHypRef Expression
1 nnnn0.1 . 2  |-  N  e.  NN
2 nnnn0 9256 . 2  |-  ( N  e.  NN  ->  N  e.  NN0 )
31, 2ax-mp 5 1  |-  N  e. 
NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   NNcn 8990   NN0cn0 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-n0 9250
This theorem is referenced by:  1nn0  9265  2nn0  9266  3nn0  9267  4nn0  9268  5nn0  9269  6nn0  9270  7nn0  9271  8nn0  9272  9nn0  9273  numlt  9481  declei  9492  numlti  9493  pockthi  12527  dec5dvds2  12582  modxp1i  12587
  Copyright terms: Public domain W3C validator