| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0i | Unicode version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
| Ref | Expression |
|---|---|
| nnnn0.1 |
|
| Ref | Expression |
|---|---|
| nnnn0i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0.1 |
. 2
| |
| 2 | nnnn0 9337 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-n0 9331 |
| This theorem is referenced by: 1nn0 9346 2nn0 9347 3nn0 9348 4nn0 9349 5nn0 9350 6nn0 9351 7nn0 9352 8nn0 9353 9nn0 9354 numlt 9563 declei 9574 numlti 9575 pockthi 12796 dec5dvds2 12851 modxp1i 12856 |
| Copyright terms: Public domain | W3C validator |