| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0i | Unicode version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
| Ref | Expression |
|---|---|
| nnnn0.1 |
|
| Ref | Expression |
|---|---|
| nnnn0i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0.1 |
. 2
| |
| 2 | nnnn0 9304 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-n0 9298 |
| This theorem is referenced by: 1nn0 9313 2nn0 9314 3nn0 9315 4nn0 9316 5nn0 9317 6nn0 9318 7nn0 9319 8nn0 9320 9nn0 9321 numlt 9530 declei 9541 numlti 9542 pockthi 12714 dec5dvds2 12769 modxp1i 12774 |
| Copyright terms: Public domain | W3C validator |