![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9nn0 | Unicode version |
Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 9104 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9201 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 ax-sep 4135 ax-cnex 7919 ax-resscn 7920 ax-1re 7922 ax-addrcl 7925 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-v 2753 df-un 3147 df-in 3149 df-ss 3156 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-br 4018 df-iota 5192 df-fv 5238 df-ov 5893 df-inn 8937 df-2 8995 df-3 8996 df-4 8997 df-5 8998 df-6 8999 df-7 9000 df-8 9001 df-9 9002 df-n0 9194 |
This theorem is referenced by: deccl 9415 le9lt10 9427 decsucc 9441 9p2e11 9487 9p3e12 9488 9p4e13 9489 9p5e14 9490 9p6e15 9491 9p7e16 9492 9p8e17 9493 9p9e18 9494 9t3e27 9523 9t4e36 9524 9t5e45 9525 9t6e54 9526 9t7e63 9527 9t8e72 9528 9t9e81 9529 sq10e99m1 10710 3dvds2dec 11888 dsndxntsetndx 12696 unifndxntsetndx 12703 setsmsdsg 14363 |
Copyright terms: Public domain | W3C validator |