Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9nn0 | Unicode version |
Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 9058 | . 2 | |
2 | 1 | nnnn0i 9155 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2146 c9 8948 cn0 9147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-5 8952 df-6 8953 df-7 8954 df-8 8955 df-9 8956 df-n0 9148 |
This theorem is referenced by: deccl 9369 le9lt10 9381 decsucc 9395 9p2e11 9441 9p3e12 9442 9p4e13 9443 9p5e14 9444 9p6e15 9445 9p7e16 9446 9p8e17 9447 9p9e18 9448 9t3e27 9477 9t4e36 9478 9t5e45 9479 9t6e54 9480 9t7e63 9481 9t8e72 9482 9t9e81 9483 sq10e99m1 10659 3dvds2dec 11836 dsndxntsetndx 12606 setsmsdsg 13531 |
Copyright terms: Public domain | W3C validator |