ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9nn0 Unicode version

Theorem 9nn0 9393
Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
9nn0  |-  9  e.  NN0

Proof of Theorem 9nn0
StepHypRef Expression
1 9nn 9279 . 2  |-  9  e.  NN
21nnnn0i 9377 1  |-  9  e.  NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   9c9 9168   NN0cn0 9369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370
This theorem is referenced by:  deccl  9592  le9lt10  9604  decsucc  9618  9p2e11  9664  9p3e12  9665  9p4e13  9666  9p5e14  9667  9p6e15  9668  9p7e16  9669  9p8e17  9670  9p9e18  9671  9t3e27  9700  9t4e36  9701  9t5e45  9702  9t6e54  9703  9t7e63  9704  9t8e72  9705  9t9e81  9706  sq10e99m1  10935  3dvds2dec  12377  2exp8  12958  dsndxntsetndx  13257  unifndxntsetndx  13264  setsmsdsg  15154
  Copyright terms: Public domain W3C validator