| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9nn0 | Unicode version | ||
| Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 9207 |
. 2
| |
| 2 | 1 | nnnn0i 9305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 df-9 9104 df-n0 9298 |
| This theorem is referenced by: deccl 9520 le9lt10 9532 decsucc 9546 9p2e11 9592 9p3e12 9593 9p4e13 9594 9p5e14 9595 9p6e15 9596 9p7e16 9597 9p8e17 9598 9p9e18 9599 9t3e27 9628 9t4e36 9629 9t5e45 9630 9t6e54 9631 9t7e63 9632 9t8e72 9633 9t9e81 9634 sq10e99m1 10860 3dvds2dec 12210 2exp8 12791 dsndxntsetndx 13089 unifndxntsetndx 13096 setsmsdsg 14985 |
| Copyright terms: Public domain | W3C validator |