ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9nn0 Unicode version

Theorem 9nn0 9354
Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
9nn0  |-  9  e.  NN0

Proof of Theorem 9nn0
StepHypRef Expression
1 9nn 9240 . 2  |-  9  e.  NN
21nnnn0i 9338 1  |-  9  e.  NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   9c9 9129   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331
This theorem is referenced by:  deccl  9553  le9lt10  9565  decsucc  9579  9p2e11  9625  9p3e12  9626  9p4e13  9627  9p5e14  9628  9p6e15  9629  9p7e16  9630  9p8e17  9631  9p9e18  9632  9t3e27  9661  9t4e36  9662  9t5e45  9663  9t6e54  9664  9t7e63  9665  9t8e72  9666  9t9e81  9667  sq10e99m1  10895  3dvds2dec  12292  2exp8  12873  dsndxntsetndx  13171  unifndxntsetndx  13178  setsmsdsg  15067
  Copyright terms: Public domain W3C validator