![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9nn0 | Unicode version |
Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 8786 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 8883 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-cnex 7630 ax-resscn 7631 ax-1re 7633 ax-addrcl 7636 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-br 3894 df-iota 5044 df-fv 5087 df-ov 5729 df-inn 8625 df-2 8683 df-3 8684 df-4 8685 df-5 8686 df-6 8687 df-7 8688 df-8 8689 df-9 8690 df-n0 8876 |
This theorem is referenced by: deccl 9094 le9lt10 9106 decsucc 9120 9p2e11 9166 9p3e12 9167 9p4e13 9168 9p5e14 9169 9p6e15 9170 9p7e16 9171 9p8e17 9172 9p9e18 9173 9t3e27 9202 9t4e36 9203 9t5e45 9204 9t6e54 9205 9t7e63 9206 9t8e72 9207 9t9e81 9208 sq10e99m1 10347 3dvds2dec 11405 setsmsdsg 12463 |
Copyright terms: Public domain | W3C validator |