![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nn0 | Unicode version |
Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
1nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8995 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9251 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7968 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-int 3872 df-inn 8985 df-n0 9244 |
This theorem is referenced by: peano2nn0 9283 deccl 9465 10nn0 9468 numsucc 9490 numadd 9497 numaddc 9498 11multnc 9518 6p5lem 9520 6p6e12 9524 7p5e12 9527 8p4e12 9532 9p2e11 9537 9p3e12 9538 10p10e20 9545 4t4e16 9549 5t2e10 9550 5t4e20 9552 6t3e18 9555 6t4e24 9556 7t3e21 9560 7t4e28 9561 8t3e24 9566 9t3e27 9573 9t9e81 9579 nn01to3 9685 fz0to3un2pr 10192 elfzom1elp1fzo 10272 fzo0sn0fzo1 10291 fldiv4lem1div2 10379 1tonninf 10515 expn1ap0 10623 nn0expcl 10627 sqval 10671 sq10 10786 nn0opthlem1d 10794 fac2 10805 bccl 10841 hashsng 10872 1elfz0hash 10880 snopiswrd 10927 wrdred1hash 10960 bcxmas 11635 arisum 11644 geoisum1 11665 geoisum1c 11666 cvgratnnlemsumlt 11674 mertenslem2 11682 fprodnn0cl 11758 ege2le3 11817 ef4p 11840 efgt1p2 11841 efgt1p 11842 sin01gt0 11908 dvds1 11998 3dvds2dec 12010 isprm5 12283 pcelnn 12462 pockthg 12498 ennnfonelemhom 12575 dsndx 12831 dsid 12832 dsslid 12833 dsndxnn 12834 basendxltdsndx 12835 slotsdifdsndx 12841 unifndx 12842 unifid 12843 unifndxnn 12844 basendxltunifndx 12845 slotsdifunifndx 12848 homid 12849 homslid 12850 ccoid 12851 ccoslid 12852 cnfldstr 14057 dveflem 14905 plyid 14925 2lgslem3a 15250 2lgslem3c 15252 1kp2ke3k 15286 ex-exp 15289 ex-fac 15290 012of 15556 isomninnlem 15590 trilpolemisumle 15598 iswomninnlem 15609 iswomni0 15611 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |