Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1nn0 | Unicode version |
Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
1nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8823 | . 2 | |
2 | 1 | nnnn0i 9077 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2125 c1 7712 cn0 9069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-1re 7805 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-int 3804 df-inn 8813 df-n0 9070 |
This theorem is referenced by: peano2nn0 9109 deccl 9288 10nn0 9291 numsucc 9313 numadd 9320 numaddc 9321 11multnc 9341 6p5lem 9343 6p6e12 9347 7p5e12 9350 8p4e12 9355 9p2e11 9360 9p3e12 9361 10p10e20 9368 4t4e16 9372 5t2e10 9373 5t4e20 9375 6t3e18 9378 6t4e24 9379 7t3e21 9383 7t4e28 9384 8t3e24 9389 9t3e27 9396 9t9e81 9402 nn01to3 9504 elfzom1elp1fzo 10079 fzo0sn0fzo1 10098 1tonninf 10317 expn1ap0 10407 nn0expcl 10411 sqval 10455 sq10 10563 nn0opthlem1d 10571 fac2 10582 bccl 10618 hashsng 10649 1elfz0hash 10657 bcxmas 11363 arisum 11372 geoisum1 11393 geoisum1c 11394 cvgratnnlemsumlt 11402 mertenslem2 11410 fprodnn0cl 11486 ege2le3 11545 ef4p 11568 efgt1p2 11569 efgt1p 11570 sin01gt0 11635 dvds1 11718 3dvds2dec 11730 ennnfonelemhom 12103 dsndx 12295 dsid 12296 dsslid 12297 dveflem 13034 1kp2ke3k 13246 ex-exp 13249 ex-fac 13250 012of 13514 isomninnlem 13550 trilpolemisumle 13558 iswomninnlem 13569 iswomni0 13571 ismkvnnlem 13572 |
Copyright terms: Public domain | W3C validator |