| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1nn0 | Unicode version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) | 
| Ref | Expression | 
|---|---|
| 1nn0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1nn 9001 | 
. 2
 | |
| 2 | 1 | nnnn0i 9257 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7973 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-int 3875 df-inn 8991 df-n0 9250 | 
| This theorem is referenced by: peano2nn0 9289 deccl 9471 10nn0 9474 numsucc 9496 numadd 9503 numaddc 9504 11multnc 9524 6p5lem 9526 6p6e12 9530 7p5e12 9533 8p4e12 9538 9p2e11 9543 9p3e12 9544 10p10e20 9551 4t4e16 9555 5t2e10 9556 5t4e20 9558 6t3e18 9561 6t4e24 9562 7t3e21 9566 7t4e28 9567 8t3e24 9572 9t3e27 9579 9t9e81 9585 nn01to3 9691 fz0to3un2pr 10198 elfzom1elp1fzo 10278 fzo0sn0fzo1 10297 fldiv4lem1div2 10397 1tonninf 10533 expn1ap0 10641 nn0expcl 10645 sqval 10689 sq10 10804 nn0opthlem1d 10812 fac2 10823 bccl 10859 hashsng 10890 1elfz0hash 10898 snopiswrd 10945 wrdred1hash 10978 bcxmas 11654 arisum 11663 geoisum1 11684 geoisum1c 11685 cvgratnnlemsumlt 11693 mertenslem2 11701 fprodnn0cl 11777 ege2le3 11836 ef4p 11859 efgt1p2 11860 efgt1p 11861 sin01gt0 11927 dvds1 12018 3dvds2dec 12031 5ndvds6 12100 isprm5 12310 pcelnn 12490 pockthg 12526 dec5nprm 12583 dec2nprm 12584 modxp1i 12587 2exp8 12604 2exp11 12605 2exp16 12606 2expltfac 12608 ennnfonelemhom 12632 dsndx 12888 dsid 12889 dsslid 12890 dsndxnn 12891 basendxltdsndx 12892 slotsdifdsndx 12898 unifndx 12899 unifid 12900 unifndxnn 12901 basendxltunifndx 12902 slotsdifunifndx 12905 homid 12906 homslid 12907 ccoid 12908 ccoslid 12909 cnfldstr 14114 dveflem 14962 plyid 14982 1sgmprm 15230 perfectlem1 15235 perfectlem2 15236 2lgslem3a 15334 2lgslem3c 15336 1kp2ke3k 15370 ex-exp 15373 ex-fac 15374 012of 15640 isomninnlem 15674 trilpolemisumle 15682 iswomninnlem 15693 iswomni0 15695 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |