| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn0 | Unicode version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 1nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9049 |
. 2
| |
| 2 | 1 | nnnn0i 9305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1re 8021 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-int 3886 df-inn 9039 df-n0 9298 |
| This theorem is referenced by: peano2nn0 9337 deccl 9520 10nn0 9523 numsucc 9545 numadd 9552 numaddc 9553 11multnc 9573 6p5lem 9575 6p6e12 9579 7p5e12 9582 8p4e12 9587 9p2e11 9592 9p3e12 9593 10p10e20 9600 4t4e16 9604 5t2e10 9605 5t4e20 9607 6t3e18 9610 6t4e24 9611 7t3e21 9615 7t4e28 9616 8t3e24 9621 9t3e27 9628 9t9e81 9634 nn01to3 9740 fz0to3un2pr 10247 elfzom1elp1fzo 10333 fzo0sn0fzo1 10352 fldiv4lem1div2 10452 1tonninf 10588 expn1ap0 10696 nn0expcl 10700 sqval 10744 sq10 10859 nn0opthlem1d 10867 fac2 10878 bccl 10914 hashsng 10945 1elfz0hash 10953 snopiswrd 11006 wrdred1hash 11039 pfx1 11157 bcxmas 11833 arisum 11842 geoisum1 11863 geoisum1c 11864 cvgratnnlemsumlt 11872 mertenslem2 11880 fprodnn0cl 11956 ege2le3 12015 ef4p 12038 efgt1p2 12039 efgt1p 12040 sin01gt0 12106 dvds1 12197 3dvds2dec 12210 5ndvds6 12279 bitsmod 12300 bitsinv1lem 12305 isprm5 12497 pcelnn 12677 pockthg 12713 dec5nprm 12770 dec2nprm 12771 modxp1i 12774 2exp8 12791 2exp11 12792 2exp16 12793 2expltfac 12795 ennnfonelemhom 12819 ocndx 13076 ocid 13077 basendxnocndx 13078 plendxnocndx 13079 dsndx 13080 dsid 13081 dsslid 13082 dsndxnn 13083 basendxltdsndx 13084 slotsdifdsndx 13090 unifndx 13091 unifid 13092 unifndxnn 13093 basendxltunifndx 13094 slotsdifunifndx 13097 homndx 13098 homid 13099 homslid 13100 ccondx 13101 ccoid 13102 ccoslid 13103 imasvalstrd 13135 prdsvalstrd 13136 cnfldstr 14353 dveflem 15231 plyid 15251 1sgmprm 15499 perfectlem1 15504 perfectlem2 15505 2lgslem3a 15603 2lgslem3c 15605 edgfid 15638 edgfndx 15639 edgfndxnn 15640 basendxltedgfndx 15642 1kp2ke3k 15697 ex-exp 15700 ex-fac 15701 012of 15967 isomninnlem 16006 trilpolemisumle 16014 iswomninnlem 16025 iswomni0 16027 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |