| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn0 | Unicode version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 1nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9047 |
. 2
| |
| 2 | 1 | nnnn0i 9303 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1re 8019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-int 3886 df-inn 9037 df-n0 9296 |
| This theorem is referenced by: peano2nn0 9335 deccl 9518 10nn0 9521 numsucc 9543 numadd 9550 numaddc 9551 11multnc 9571 6p5lem 9573 6p6e12 9577 7p5e12 9580 8p4e12 9585 9p2e11 9590 9p3e12 9591 10p10e20 9598 4t4e16 9602 5t2e10 9603 5t4e20 9605 6t3e18 9608 6t4e24 9609 7t3e21 9613 7t4e28 9614 8t3e24 9619 9t3e27 9626 9t9e81 9632 nn01to3 9738 fz0to3un2pr 10245 elfzom1elp1fzo 10331 fzo0sn0fzo1 10350 fldiv4lem1div2 10450 1tonninf 10586 expn1ap0 10694 nn0expcl 10698 sqval 10742 sq10 10857 nn0opthlem1d 10865 fac2 10876 bccl 10912 hashsng 10943 1elfz0hash 10951 snopiswrd 11004 wrdred1hash 11037 bcxmas 11800 arisum 11809 geoisum1 11830 geoisum1c 11831 cvgratnnlemsumlt 11839 mertenslem2 11847 fprodnn0cl 11923 ege2le3 11982 ef4p 12005 efgt1p2 12006 efgt1p 12007 sin01gt0 12073 dvds1 12164 3dvds2dec 12177 5ndvds6 12246 bitsmod 12267 bitsinv1lem 12272 isprm5 12464 pcelnn 12644 pockthg 12680 dec5nprm 12737 dec2nprm 12738 modxp1i 12741 2exp8 12758 2exp11 12759 2exp16 12760 2expltfac 12762 ennnfonelemhom 12786 ocndx 13043 ocid 13044 basendxnocndx 13045 plendxnocndx 13046 dsndx 13047 dsid 13048 dsslid 13049 dsndxnn 13050 basendxltdsndx 13051 slotsdifdsndx 13057 unifndx 13058 unifid 13059 unifndxnn 13060 basendxltunifndx 13061 slotsdifunifndx 13064 homndx 13065 homid 13066 homslid 13067 ccondx 13068 ccoid 13069 ccoslid 13070 imasvalstrd 13102 prdsvalstrd 13103 cnfldstr 14320 dveflem 15198 plyid 15218 1sgmprm 15466 perfectlem1 15471 perfectlem2 15472 2lgslem3a 15570 2lgslem3c 15572 edgfid 15605 edgfndx 15606 edgfndxnn 15607 basendxltedgfndx 15609 1kp2ke3k 15660 ex-exp 15663 ex-fac 15664 012of 15930 isomninnlem 15969 trilpolemisumle 15977 iswomninnlem 15988 iswomni0 15990 ismkvnnlem 15991 |
| Copyright terms: Public domain | W3C validator |