| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn0 | Unicode version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 1nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9121 |
. 2
| |
| 2 | 1 | nnnn0i 9377 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1re 8093 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-int 3924 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: peano2nn0 9409 deccl 9592 10nn0 9595 numsucc 9617 numadd 9624 numaddc 9625 11multnc 9645 6p5lem 9647 6p6e12 9651 7p5e12 9654 8p4e12 9659 9p2e11 9664 9p3e12 9665 10p10e20 9672 4t4e16 9676 5t2e10 9677 5t4e20 9679 6t3e18 9682 6t4e24 9683 7t3e21 9687 7t4e28 9688 8t3e24 9693 9t3e27 9700 9t9e81 9706 nn01to3 9812 fz0to3un2pr 10319 elfzom1elp1fzo 10408 fzo0sn0fzo1 10427 fldiv4lem1div2 10527 1tonninf 10663 expn1ap0 10771 nn0expcl 10775 sqval 10819 sq10 10934 nn0opthlem1d 10942 fac2 10953 bccl 10989 hashsng 11020 1elfz0hash 11028 snopiswrd 11081 wrdred1hash 11115 pfx1 11235 s3fv1g 11324 bcxmas 12000 arisum 12009 geoisum1 12030 geoisum1c 12031 cvgratnnlemsumlt 12039 mertenslem2 12047 fprodnn0cl 12123 ege2le3 12182 ef4p 12205 efgt1p2 12206 efgt1p 12207 sin01gt0 12273 dvds1 12364 3dvds2dec 12377 5ndvds6 12446 bitsmod 12467 bitsinv1lem 12472 isprm5 12664 pcelnn 12844 pockthg 12880 dec5nprm 12937 dec2nprm 12938 modxp1i 12941 2exp8 12958 2exp11 12959 2exp16 12960 2expltfac 12962 ennnfonelemhom 12986 ocndx 13244 ocid 13245 basendxnocndx 13246 plendxnocndx 13247 dsndx 13248 dsid 13249 dsslid 13250 dsndxnn 13251 basendxltdsndx 13252 slotsdifdsndx 13258 unifndx 13259 unifid 13260 unifndxnn 13261 basendxltunifndx 13262 slotsdifunifndx 13265 homndx 13266 homid 13267 homslid 13268 ccondx 13269 ccoid 13270 ccoslid 13271 imasvalstrd 13303 prdsvalstrd 13304 cnfldstr 14522 dveflem 15400 plyid 15420 1sgmprm 15668 perfectlem1 15673 perfectlem2 15674 2lgslem3a 15772 2lgslem3c 15774 edgfid 15807 edgfndx 15808 edgfndxnn 15809 basendxltedgfndx 15811 1kp2ke3k 16088 ex-exp 16091 ex-fac 16092 012of 16357 isomninnlem 16398 trilpolemisumle 16406 iswomninnlem 16417 iswomni0 16419 ismkvnnlem 16420 |
| Copyright terms: Public domain | W3C validator |