| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn0 | Unicode version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 1nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9082 |
. 2
| |
| 2 | 1 | nnnn0i 9338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-1re 8054 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-int 3900 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: peano2nn0 9370 deccl 9553 10nn0 9556 numsucc 9578 numadd 9585 numaddc 9586 11multnc 9606 6p5lem 9608 6p6e12 9612 7p5e12 9615 8p4e12 9620 9p2e11 9625 9p3e12 9626 10p10e20 9633 4t4e16 9637 5t2e10 9638 5t4e20 9640 6t3e18 9643 6t4e24 9644 7t3e21 9648 7t4e28 9649 8t3e24 9654 9t3e27 9661 9t9e81 9667 nn01to3 9773 fz0to3un2pr 10280 elfzom1elp1fzo 10368 fzo0sn0fzo1 10387 fldiv4lem1div2 10487 1tonninf 10623 expn1ap0 10731 nn0expcl 10735 sqval 10779 sq10 10894 nn0opthlem1d 10902 fac2 10913 bccl 10949 hashsng 10980 1elfz0hash 10988 snopiswrd 11041 wrdred1hash 11074 pfx1 11194 bcxmas 11915 arisum 11924 geoisum1 11945 geoisum1c 11946 cvgratnnlemsumlt 11954 mertenslem2 11962 fprodnn0cl 12038 ege2le3 12097 ef4p 12120 efgt1p2 12121 efgt1p 12122 sin01gt0 12188 dvds1 12279 3dvds2dec 12292 5ndvds6 12361 bitsmod 12382 bitsinv1lem 12387 isprm5 12579 pcelnn 12759 pockthg 12795 dec5nprm 12852 dec2nprm 12853 modxp1i 12856 2exp8 12873 2exp11 12874 2exp16 12875 2expltfac 12877 ennnfonelemhom 12901 ocndx 13158 ocid 13159 basendxnocndx 13160 plendxnocndx 13161 dsndx 13162 dsid 13163 dsslid 13164 dsndxnn 13165 basendxltdsndx 13166 slotsdifdsndx 13172 unifndx 13173 unifid 13174 unifndxnn 13175 basendxltunifndx 13176 slotsdifunifndx 13179 homndx 13180 homid 13181 homslid 13182 ccondx 13183 ccoid 13184 ccoslid 13185 imasvalstrd 13217 prdsvalstrd 13218 cnfldstr 14435 dveflem 15313 plyid 15333 1sgmprm 15581 perfectlem1 15586 perfectlem2 15587 2lgslem3a 15685 2lgslem3c 15687 edgfid 15720 edgfndx 15721 edgfndxnn 15722 basendxltedgfndx 15724 1kp2ke3k 15860 ex-exp 15863 ex-fac 15864 012of 16130 isomninnlem 16171 trilpolemisumle 16179 iswomninnlem 16190 iswomni0 16192 ismkvnnlem 16193 |
| Copyright terms: Public domain | W3C validator |