| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5nn0 | Unicode version | ||
| Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 5nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn 9236 |
. 2
| |
| 2 | 1 | nnnn0i 9338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-n0 9331 |
| This theorem is referenced by: 6p6e12 9612 7p6e13 9616 8p6e14 9622 8p8e16 9624 9p6e15 9629 9p7e16 9630 5t2e10 9638 5t3e15 9639 5t4e20 9640 5t5e25 9641 6t6e36 9646 7t5e35 9650 7t6e42 9651 8t6e48 9657 8t8e64 9659 9t5e45 9663 9t6e54 9664 9t7e63 9665 dec2dvds 12849 dec5dvds2 12851 2exp8 12873 2exp11 12874 2exp16 12875 slotsdnscsi 13170 ex-fac 15864 |
| Copyright terms: Public domain | W3C validator |