![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5nn0 | Unicode version |
Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
5nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 9081 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9182 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4121 ax-cnex 7901 ax-resscn 7902 ax-1re 7904 ax-addrcl 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-iota 5178 df-fv 5224 df-ov 5877 df-inn 8918 df-2 8976 df-3 8977 df-4 8978 df-5 8979 df-n0 9175 |
This theorem is referenced by: 6p6e12 9455 7p6e13 9459 8p6e14 9465 8p8e16 9467 9p6e15 9472 9p7e16 9473 5t2e10 9481 5t3e15 9482 5t4e20 9483 5t5e25 9484 6t6e36 9489 7t5e35 9493 7t6e42 9494 8t6e48 9500 8t8e64 9502 9t5e45 9506 9t6e54 9507 9t7e63 9508 slotsdnscsi 12668 ex-fac 14362 |
Copyright terms: Public domain | W3C validator |