ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5nn0 Unicode version

Theorem 5nn0 9350
Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
5nn0  |-  5  e.  NN0

Proof of Theorem 5nn0
StepHypRef Expression
1 5nn 9236 . 2  |-  5  e.  NN
21nnnn0i 9338 1  |-  5  e.  NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   5c5 9125   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-n0 9331
This theorem is referenced by:  6p6e12  9612  7p6e13  9616  8p6e14  9622  8p8e16  9624  9p6e15  9629  9p7e16  9630  5t2e10  9638  5t3e15  9639  5t4e20  9640  5t5e25  9641  6t6e36  9646  7t5e35  9650  7t6e42  9651  8t6e48  9657  8t8e64  9659  9t5e45  9663  9t6e54  9664  9t7e63  9665  dec2dvds  12849  dec5dvds2  12851  2exp8  12873  2exp11  12874  2exp16  12875  slotsdnscsi  13170  ex-fac  15864
  Copyright terms: Public domain W3C validator