| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5nn0 | Unicode version | ||
| Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 5nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn 9201 |
. 2
| |
| 2 | 1 | nnnn0i 9303 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-n0 9296 |
| This theorem is referenced by: 6p6e12 9577 7p6e13 9581 8p6e14 9587 8p8e16 9589 9p6e15 9594 9p7e16 9595 5t2e10 9603 5t3e15 9604 5t4e20 9605 5t5e25 9606 6t6e36 9611 7t5e35 9615 7t6e42 9616 8t6e48 9622 8t8e64 9624 9t5e45 9628 9t6e54 9629 9t7e63 9630 dec2dvds 12734 dec5dvds2 12736 2exp8 12758 2exp11 12759 2exp16 12760 slotsdnscsi 13055 ex-fac 15664 |
| Copyright terms: Public domain | W3C validator |