| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5nn0 | Unicode version | ||
| Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 5nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn 9203 |
. 2
| |
| 2 | 1 | nnnn0i 9305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-n0 9298 |
| This theorem is referenced by: 6p6e12 9579 7p6e13 9583 8p6e14 9589 8p8e16 9591 9p6e15 9596 9p7e16 9597 5t2e10 9605 5t3e15 9606 5t4e20 9607 5t5e25 9608 6t6e36 9613 7t5e35 9617 7t6e42 9618 8t6e48 9624 8t8e64 9626 9t5e45 9630 9t6e54 9631 9t7e63 9632 dec2dvds 12767 dec5dvds2 12769 2exp8 12791 2exp11 12792 2exp16 12793 slotsdnscsi 13088 ex-fac 15701 |
| Copyright terms: Public domain | W3C validator |