| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn0 | Unicode version | ||
| Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 3nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 9273 |
. 2
| |
| 2 | 1 | nnnn0i 9377 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-3 9170 df-n0 9370 |
| This theorem is referenced by: 7p4e11 9653 7p7e14 9656 8p4e12 9659 8p6e14 9661 9p4e13 9666 9p5e14 9667 4t4e16 9676 5t4e20 9679 6t4e24 9683 6t6e36 9685 7t4e28 9688 7t6e42 9690 8t4e32 9694 8t5e40 9695 9t4e36 9701 9t5e45 9702 9t7e63 9704 9t8e72 9705 fz0to3un2pr 10319 4fvwrd4 10336 fldiv4p1lem1div2 10525 expnass 10867 binom3 10879 fac4 10955 4bc2eq6 10996 ef4p 12205 efi4p 12228 resin4p 12229 recos4p 12230 ef01bndlem 12267 sin01bnd 12268 sin01gt0 12273 2exp5 12955 2exp6 12956 2exp8 12958 2exp11 12959 2exp16 12960 3exp3 12961 dsndxnmulrndx 13255 basendxltunifndx 13262 unifndxntsetndx 13264 slotsdifunifndx 13265 tangtx 15512 binom4 15653 gausslemma2dlem4 15743 2lgslem3b 15773 2lgslem3d 15775 |
| Copyright terms: Public domain | W3C validator |