| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn0 | Unicode version | ||
| Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 3nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 9170 |
. 2
| |
| 2 | 1 | nnnn0i 9274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-n0 9267 |
| This theorem is referenced by: 7p4e11 9549 7p7e14 9552 8p4e12 9555 8p6e14 9557 9p4e13 9562 9p5e14 9563 4t4e16 9572 5t4e20 9575 6t4e24 9579 6t6e36 9581 7t4e28 9584 7t6e42 9586 8t4e32 9590 8t5e40 9591 9t4e36 9597 9t5e45 9598 9t7e63 9600 9t8e72 9601 fz0to3un2pr 10215 4fvwrd4 10232 fldiv4p1lem1div2 10412 expnass 10754 binom3 10766 fac4 10842 4bc2eq6 10883 ef4p 11876 efi4p 11899 resin4p 11900 recos4p 11901 ef01bndlem 11938 sin01bnd 11939 sin01gt0 11944 2exp5 12626 2exp6 12627 2exp8 12629 2exp11 12630 2exp16 12631 3exp3 12632 dsndxnmulrndx 12924 basendxltunifndx 12931 unifndxntsetndx 12933 slotsdifunifndx 12934 tangtx 15158 binom4 15299 gausslemma2dlem4 15389 2lgslem3b 15419 2lgslem3d 15421 |
| Copyright terms: Public domain | W3C validator |