Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3nn0 | Unicode version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 9044 | . 2 | |
2 | 1 | nnnn0i 9147 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2142 c3 8934 cn0 9139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 ax-sep 4108 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-v 2733 df-un 3126 df-in 3128 df-ss 3135 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-br 3991 df-iota 5162 df-fv 5208 df-ov 5860 df-inn 8883 df-2 8941 df-3 8942 df-n0 9140 |
This theorem is referenced by: 7p4e11 9422 7p7e14 9425 8p4e12 9428 8p6e14 9430 9p4e13 9435 9p5e14 9436 4t4e16 9445 5t4e20 9448 6t4e24 9452 6t6e36 9454 7t4e28 9457 7t6e42 9459 8t4e32 9463 8t5e40 9464 9t4e36 9470 9t5e45 9471 9t7e63 9473 9t8e72 9474 fz0to3un2pr 10083 4fvwrd4 10100 fldiv4p1lem1div2 10265 expnass 10585 binom3 10597 fac4 10671 4bc2eq6 10712 ef4p 11661 efi4p 11684 resin4p 11685 recos4p 11686 ef01bndlem 11723 sin01bnd 11724 sin01gt0 11728 tangtx 13638 binom4 13776 |
Copyright terms: Public domain | W3C validator |