| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn0 | Unicode version | ||
| Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 3nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 9199 |
. 2
| |
| 2 | 1 | nnnn0i 9303 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 df-n0 9296 |
| This theorem is referenced by: 7p4e11 9579 7p7e14 9582 8p4e12 9585 8p6e14 9587 9p4e13 9592 9p5e14 9593 4t4e16 9602 5t4e20 9605 6t4e24 9609 6t6e36 9611 7t4e28 9614 7t6e42 9616 8t4e32 9620 8t5e40 9621 9t4e36 9627 9t5e45 9628 9t7e63 9630 9t8e72 9631 fz0to3un2pr 10245 4fvwrd4 10262 fldiv4p1lem1div2 10448 expnass 10790 binom3 10802 fac4 10878 4bc2eq6 10919 ef4p 12005 efi4p 12028 resin4p 12029 recos4p 12030 ef01bndlem 12067 sin01bnd 12068 sin01gt0 12073 2exp5 12755 2exp6 12756 2exp8 12758 2exp11 12759 2exp16 12760 3exp3 12761 dsndxnmulrndx 13054 basendxltunifndx 13061 unifndxntsetndx 13063 slotsdifunifndx 13064 tangtx 15310 binom4 15451 gausslemma2dlem4 15541 2lgslem3b 15571 2lgslem3d 15573 |
| Copyright terms: Public domain | W3C validator |