![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3nn0 | Unicode version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 9099 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9202 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7920 ax-resscn 7921 ax-1re 7923 ax-addrcl 7926 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-iota 5193 df-fv 5239 df-ov 5894 df-inn 8938 df-2 8996 df-3 8997 df-n0 9195 |
This theorem is referenced by: 7p4e11 9477 7p7e14 9480 8p4e12 9483 8p6e14 9485 9p4e13 9490 9p5e14 9491 4t4e16 9500 5t4e20 9503 6t4e24 9507 6t6e36 9509 7t4e28 9512 7t6e42 9514 8t4e32 9518 8t5e40 9519 9t4e36 9525 9t5e45 9526 9t7e63 9528 9t8e72 9529 fz0to3un2pr 10141 4fvwrd4 10158 fldiv4p1lem1div2 10323 expnass 10644 binom3 10656 fac4 10731 4bc2eq6 10772 ef4p 11720 efi4p 11743 resin4p 11744 recos4p 11745 ef01bndlem 11782 sin01bnd 11783 sin01gt0 11787 dsndxnmulrndx 12695 basendxltunifndx 12702 unifndxntsetndx 12704 slotsdifunifndx 12705 cnfldstr 13827 tangtx 14656 binom4 14794 |
Copyright terms: Public domain | W3C validator |