| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn0 | Unicode version | ||
| Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 3nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 9234 |
. 2
| |
| 2 | 1 | nnnn0i 9338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-n0 9331 |
| This theorem is referenced by: 7p4e11 9614 7p7e14 9617 8p4e12 9620 8p6e14 9622 9p4e13 9627 9p5e14 9628 4t4e16 9637 5t4e20 9640 6t4e24 9644 6t6e36 9646 7t4e28 9649 7t6e42 9651 8t4e32 9655 8t5e40 9656 9t4e36 9662 9t5e45 9663 9t7e63 9665 9t8e72 9666 fz0to3un2pr 10280 4fvwrd4 10297 fldiv4p1lem1div2 10485 expnass 10827 binom3 10839 fac4 10915 4bc2eq6 10956 ef4p 12120 efi4p 12143 resin4p 12144 recos4p 12145 ef01bndlem 12182 sin01bnd 12183 sin01gt0 12188 2exp5 12870 2exp6 12871 2exp8 12873 2exp11 12874 2exp16 12875 3exp3 12876 dsndxnmulrndx 13169 basendxltunifndx 13176 unifndxntsetndx 13178 slotsdifunifndx 13179 tangtx 15425 binom4 15566 gausslemma2dlem4 15656 2lgslem3b 15686 2lgslem3d 15688 |
| Copyright terms: Public domain | W3C validator |