![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3nn0 | Unicode version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 9147 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9251 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-n0 9244 |
This theorem is referenced by: 7p4e11 9526 7p7e14 9529 8p4e12 9532 8p6e14 9534 9p4e13 9539 9p5e14 9540 4t4e16 9549 5t4e20 9552 6t4e24 9556 6t6e36 9558 7t4e28 9561 7t6e42 9563 8t4e32 9567 8t5e40 9568 9t4e36 9574 9t5e45 9575 9t7e63 9577 9t8e72 9578 fz0to3un2pr 10192 4fvwrd4 10209 fldiv4p1lem1div2 10377 expnass 10719 binom3 10731 fac4 10807 4bc2eq6 10848 ef4p 11840 efi4p 11863 resin4p 11864 recos4p 11865 ef01bndlem 11902 sin01bnd 11903 sin01gt0 11908 dsndxnmulrndx 12838 basendxltunifndx 12845 unifndxntsetndx 12847 slotsdifunifndx 12848 tangtx 15014 binom4 15152 gausslemma2dlem4 15221 2lgslem3b 15251 2lgslem3d 15253 |
Copyright terms: Public domain | W3C validator |