| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn0 | Unicode version | ||
| Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 3nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 9201 |
. 2
| |
| 2 | 1 | nnnn0i 9305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-2 9097 df-3 9098 df-n0 9298 |
| This theorem is referenced by: 7p4e11 9581 7p7e14 9584 8p4e12 9587 8p6e14 9589 9p4e13 9594 9p5e14 9595 4t4e16 9604 5t4e20 9607 6t4e24 9611 6t6e36 9613 7t4e28 9616 7t6e42 9618 8t4e32 9622 8t5e40 9623 9t4e36 9629 9t5e45 9630 9t7e63 9632 9t8e72 9633 fz0to3un2pr 10247 4fvwrd4 10264 fldiv4p1lem1div2 10450 expnass 10792 binom3 10804 fac4 10880 4bc2eq6 10921 ef4p 12038 efi4p 12061 resin4p 12062 recos4p 12063 ef01bndlem 12100 sin01bnd 12101 sin01gt0 12106 2exp5 12788 2exp6 12789 2exp8 12791 2exp11 12792 2exp16 12793 3exp3 12794 dsndxnmulrndx 13087 basendxltunifndx 13094 unifndxntsetndx 13096 slotsdifunifndx 13097 tangtx 15343 binom4 15484 gausslemma2dlem4 15574 2lgslem3b 15604 2lgslem3d 15606 |
| Copyright terms: Public domain | W3C validator |