![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3nn0 | Unicode version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 9144 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9248 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-n0 9241 |
This theorem is referenced by: 7p4e11 9523 7p7e14 9526 8p4e12 9529 8p6e14 9531 9p4e13 9536 9p5e14 9537 4t4e16 9546 5t4e20 9549 6t4e24 9553 6t6e36 9555 7t4e28 9558 7t6e42 9560 8t4e32 9564 8t5e40 9565 9t4e36 9571 9t5e45 9572 9t7e63 9574 9t8e72 9575 fz0to3un2pr 10189 4fvwrd4 10206 fldiv4p1lem1div2 10374 expnass 10716 binom3 10728 fac4 10804 4bc2eq6 10845 ef4p 11837 efi4p 11860 resin4p 11861 recos4p 11862 ef01bndlem 11899 sin01bnd 11900 sin01gt0 11905 dsndxnmulrndx 12835 basendxltunifndx 12842 unifndxntsetndx 12844 slotsdifunifndx 12845 cnfldstr 14049 tangtx 14973 binom4 15111 gausslemma2dlem4 15180 |
Copyright terms: Public domain | W3C validator |