| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version | ||
| Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9169 |
. 2
| |
| 2 | 1 | nnnn0i 9274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-n0 9267 |
| This theorem is referenced by: nn0n0n1ge2 9413 7p6e13 9551 8p3e11 9554 8p5e13 9556 9p3e12 9561 9p4e13 9562 4t3e12 9571 4t4e16 9572 5t3e15 9574 5t5e25 9576 6t3e18 9578 6t5e30 9580 7t3e21 9583 7t4e28 9584 7t5e35 9585 7t6e42 9586 7t7e49 9587 8t3e24 9589 8t4e32 9590 8t5e40 9591 9t3e27 9596 9t4e36 9597 9t8e72 9601 9t9e81 9602 decbin3 9615 2eluzge0 9666 nn01to3 9708 xnn0le2is012 9958 fzo0to42pr 10313 nn0sqcl 10675 sqmul 10710 resqcl 10716 zsqcl 10719 cu2 10747 i3 10750 i4 10751 binom3 10766 nn0opthlem1d 10829 fac3 10841 faclbnd2 10851 abssq 11263 sqabs 11264 ef4p 11876 efgt1p2 11877 efi4p 11899 ef01bndlem 11938 cos01bnd 11940 oexpneg 12059 oddge22np1 12063 isprm5 12335 pythagtriplem4 12462 oddprmdvds 12548 dec2dvds 12605 dec5dvds 12606 2exp4 12625 2exp5 12626 2exp6 12627 2exp7 12628 2exp8 12629 2exp11 12630 2exp16 12631 3exp3 12632 2expltfac 12633 basendxltdsndx 12921 dsndxnplusgndx 12923 dsndxnmulrndx 12924 slotsdnscsi 12925 dsndxntsetndx 12926 slotsdifdsndx 12927 slotsdifunifndx 12934 prdsvalstrd 12973 cnfldstr 14190 setsmsdsg 14800 dveflem 15046 tangtx 15158 2logb9irr 15291 2logb9irrap 15297 binom4 15299 mersenne 15317 lgslem1 15325 gausslemma2dlem6 15392 lgseisenlem4 15398 2lgslem1c 15415 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 1kp2ke3k 15454 ex-exp 15457 ex-fac 15458 |
| Copyright terms: Public domain | W3C validator |