![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version |
Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
2nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 9146 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9251 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-n0 9244 |
This theorem is referenced by: nn0n0n1ge2 9390 7p6e13 9528 8p3e11 9531 8p5e13 9533 9p3e12 9538 9p4e13 9539 4t3e12 9548 4t4e16 9549 5t3e15 9551 5t5e25 9553 6t3e18 9555 6t5e30 9557 7t3e21 9560 7t4e28 9561 7t5e35 9562 7t6e42 9563 7t7e49 9564 8t3e24 9566 8t4e32 9567 8t5e40 9568 9t3e27 9573 9t4e36 9574 9t8e72 9578 9t9e81 9579 decbin3 9592 2eluzge0 9643 nn01to3 9685 xnn0le2is012 9935 fzo0to42pr 10290 nn0sqcl 10640 sqmul 10675 resqcl 10681 zsqcl 10684 cu2 10712 i3 10715 i4 10716 binom3 10731 nn0opthlem1d 10794 fac3 10806 faclbnd2 10816 abssq 11228 sqabs 11229 ef4p 11840 efgt1p2 11841 efi4p 11863 ef01bndlem 11902 cos01bnd 11904 oexpneg 12021 oddge22np1 12025 isprm5 12283 pythagtriplem4 12409 oddprmdvds 12495 basendxltdsndx 12835 dsndxnplusgndx 12837 dsndxnmulrndx 12838 slotsdnscsi 12839 dsndxntsetndx 12840 slotsdifdsndx 12841 slotsdifunifndx 12848 cnfldstr 14057 setsmsdsg 14659 dveflem 14905 tangtx 15014 2logb9irr 15144 2logb9irrap 15150 binom4 15152 lgslem1 15157 gausslemma2dlem6 15224 lgseisenlem4 15230 2lgslem1c 15247 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 1kp2ke3k 15286 ex-exp 15289 ex-fac 15290 |
Copyright terms: Public domain | W3C validator |