| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version | ||
| Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9198 |
. 2
| |
| 2 | 1 | nnnn0i 9303 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-n0 9296 |
| This theorem is referenced by: nn0n0n1ge2 9443 7p6e13 9581 8p3e11 9584 8p5e13 9586 9p3e12 9591 9p4e13 9592 4t3e12 9601 4t4e16 9602 5t3e15 9604 5t5e25 9606 6t3e18 9608 6t5e30 9610 7t3e21 9613 7t4e28 9614 7t5e35 9615 7t6e42 9616 7t7e49 9617 8t3e24 9619 8t4e32 9620 8t5e40 9621 9t3e27 9626 9t4e36 9627 9t8e72 9631 9t9e81 9632 decbin3 9645 2eluzge0 9696 nn01to3 9738 xnn0le2is012 9988 fzo0to42pr 10349 nn0sqcl 10711 sqmul 10746 resqcl 10752 zsqcl 10755 cu2 10783 i3 10786 i4 10787 binom3 10802 nn0opthlem1d 10865 fac3 10877 faclbnd2 10887 abssq 11392 sqabs 11393 ef4p 12005 efgt1p2 12006 efi4p 12028 ef01bndlem 12067 cos01bnd 12069 oexpneg 12188 oddge22np1 12192 isprm5 12464 pythagtriplem4 12591 oddprmdvds 12677 dec2dvds 12734 dec5dvds 12735 2exp4 12754 2exp5 12755 2exp6 12756 2exp7 12757 2exp8 12758 2exp11 12759 2exp16 12760 3exp3 12761 2expltfac 12762 basendxltdsndx 13051 dsndxnplusgndx 13053 dsndxnmulrndx 13054 slotsdnscsi 13055 dsndxntsetndx 13056 slotsdifdsndx 13057 slotsdifunifndx 13064 prdsvalstrd 13103 cnfldstr 14320 setsmsdsg 14952 dveflem 15198 tangtx 15310 2logb9irr 15443 2logb9irrap 15449 binom4 15451 mersenne 15469 lgslem1 15477 gausslemma2dlem6 15544 lgseisenlem4 15550 2lgslem1c 15567 2lgslem3a 15570 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 1kp2ke3k 15660 ex-exp 15663 ex-fac 15664 |
| Copyright terms: Public domain | W3C validator |