| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version | ||
| Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) | 
| Ref | Expression | 
|---|---|
| 2nn0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2nn 9152 | 
. 2
 | |
| 2 | 1 | nnnn0i 9257 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-n0 9250 | 
| This theorem is referenced by: nn0n0n1ge2 9396 7p6e13 9534 8p3e11 9537 8p5e13 9539 9p3e12 9544 9p4e13 9545 4t3e12 9554 4t4e16 9555 5t3e15 9557 5t5e25 9559 6t3e18 9561 6t5e30 9563 7t3e21 9566 7t4e28 9567 7t5e35 9568 7t6e42 9569 7t7e49 9570 8t3e24 9572 8t4e32 9573 8t5e40 9574 9t3e27 9579 9t4e36 9580 9t8e72 9584 9t9e81 9585 decbin3 9598 2eluzge0 9649 nn01to3 9691 xnn0le2is012 9941 fzo0to42pr 10296 nn0sqcl 10658 sqmul 10693 resqcl 10699 zsqcl 10702 cu2 10730 i3 10733 i4 10734 binom3 10749 nn0opthlem1d 10812 fac3 10824 faclbnd2 10834 abssq 11246 sqabs 11247 ef4p 11859 efgt1p2 11860 efi4p 11882 ef01bndlem 11921 cos01bnd 11923 oexpneg 12042 oddge22np1 12046 isprm5 12310 pythagtriplem4 12437 oddprmdvds 12523 dec2dvds 12580 dec5dvds 12581 2exp4 12600 2exp5 12601 2exp6 12602 2exp7 12603 2exp8 12604 2exp11 12605 2exp16 12606 3exp3 12607 2expltfac 12608 basendxltdsndx 12892 dsndxnplusgndx 12894 dsndxnmulrndx 12895 slotsdnscsi 12896 dsndxntsetndx 12897 slotsdifdsndx 12898 slotsdifunifndx 12905 cnfldstr 14114 setsmsdsg 14716 dveflem 14962 tangtx 15074 2logb9irr 15207 2logb9irrap 15213 binom4 15215 mersenne 15233 lgslem1 15241 gausslemma2dlem6 15308 lgseisenlem4 15314 2lgslem1c 15331 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 1kp2ke3k 15370 ex-exp 15373 ex-fac 15374 | 
| Copyright terms: Public domain | W3C validator |