| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version | ||
| Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9200 |
. 2
| |
| 2 | 1 | nnnn0i 9305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-2 9097 df-n0 9298 |
| This theorem is referenced by: nn0n0n1ge2 9445 7p6e13 9583 8p3e11 9586 8p5e13 9588 9p3e12 9593 9p4e13 9594 4t3e12 9603 4t4e16 9604 5t3e15 9606 5t5e25 9608 6t3e18 9610 6t5e30 9612 7t3e21 9615 7t4e28 9616 7t5e35 9617 7t6e42 9618 7t7e49 9619 8t3e24 9621 8t4e32 9622 8t5e40 9623 9t3e27 9628 9t4e36 9629 9t8e72 9633 9t9e81 9634 decbin3 9647 2eluzge0 9698 nn01to3 9740 xnn0le2is012 9990 fzo0to42pr 10351 nn0sqcl 10713 sqmul 10748 resqcl 10754 zsqcl 10757 cu2 10785 i3 10788 i4 10789 binom3 10804 nn0opthlem1d 10867 fac3 10879 faclbnd2 10889 abssq 11425 sqabs 11426 ef4p 12038 efgt1p2 12039 efi4p 12061 ef01bndlem 12100 cos01bnd 12102 oexpneg 12221 oddge22np1 12225 isprm5 12497 pythagtriplem4 12624 oddprmdvds 12710 dec2dvds 12767 dec5dvds 12768 2exp4 12787 2exp5 12788 2exp6 12789 2exp7 12790 2exp8 12791 2exp11 12792 2exp16 12793 3exp3 12794 2expltfac 12795 basendxltdsndx 13084 dsndxnplusgndx 13086 dsndxnmulrndx 13087 slotsdnscsi 13088 dsndxntsetndx 13089 slotsdifdsndx 13090 slotsdifunifndx 13097 prdsvalstrd 13136 cnfldstr 14353 setsmsdsg 14985 dveflem 15231 tangtx 15343 2logb9irr 15476 2logb9irrap 15482 binom4 15484 mersenne 15502 lgslem1 15510 gausslemma2dlem6 15577 lgseisenlem4 15583 2lgslem1c 15600 2lgslem3a 15603 2lgslem3b 15604 2lgslem3c 15605 2lgslem3d 15606 1kp2ke3k 15697 ex-exp 15700 ex-fac 15701 |
| Copyright terms: Public domain | W3C validator |