![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version |
Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
2nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 9078 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9182 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4121 ax-cnex 7901 ax-resscn 7902 ax-1re 7904 ax-addrcl 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-iota 5178 df-fv 5224 df-ov 5877 df-inn 8918 df-2 8976 df-n0 9175 |
This theorem is referenced by: nn0n0n1ge2 9321 7p6e13 9459 8p3e11 9462 8p5e13 9464 9p3e12 9469 9p4e13 9470 4t3e12 9479 4t4e16 9480 5t3e15 9482 5t5e25 9484 6t3e18 9486 6t5e30 9488 7t3e21 9491 7t4e28 9492 7t5e35 9493 7t6e42 9494 7t7e49 9495 8t3e24 9497 8t4e32 9498 8t5e40 9499 9t3e27 9504 9t4e36 9505 9t8e72 9509 9t9e81 9510 decbin3 9523 2eluzge0 9573 nn01to3 9615 xnn0le2is012 9864 fzo0to42pr 10217 nn0sqcl 10544 sqmul 10579 resqcl 10584 zsqcl 10587 cu2 10615 i3 10618 i4 10619 binom3 10634 nn0opthlem1d 10695 fac3 10707 faclbnd2 10717 abssq 11085 sqabs 11086 ef4p 11697 efgt1p2 11698 efi4p 11720 ef01bndlem 11759 cos01bnd 11761 oexpneg 11876 oddge22np1 11880 isprm5 12136 pythagtriplem4 12262 oddprmdvds 12346 basendxltdsndx 12664 dsndxnplusgndx 12666 dsndxnmulrndx 12667 slotsdnscsi 12668 dsndxntsetndx 12669 slotsdifdsndx 12670 slotsdifunifndx 12677 setsmsdsg 13911 dveflem 14118 tangtx 14190 2logb9irr 14320 2logb9irrap 14326 binom4 14328 lgslem1 14332 1kp2ke3k 14396 ex-exp 14399 ex-fac 14400 |
Copyright terms: Public domain | W3C validator |