| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version | ||
| Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9233 |
. 2
| |
| 2 | 1 | nnnn0i 9338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-n0 9331 |
| This theorem is referenced by: nn0n0n1ge2 9478 7p6e13 9616 8p3e11 9619 8p5e13 9621 9p3e12 9626 9p4e13 9627 4t3e12 9636 4t4e16 9637 5t3e15 9639 5t5e25 9641 6t3e18 9643 6t5e30 9645 7t3e21 9648 7t4e28 9649 7t5e35 9650 7t6e42 9651 7t7e49 9652 8t3e24 9654 8t4e32 9655 8t5e40 9656 9t3e27 9661 9t4e36 9662 9t8e72 9666 9t9e81 9667 decbin3 9680 2eluzge0 9731 nn01to3 9773 xnn0le2is012 10023 fzo0to42pr 10386 nn0sqcl 10748 sqmul 10783 resqcl 10789 zsqcl 10792 cu2 10820 i3 10823 i4 10824 binom3 10839 nn0opthlem1d 10902 fac3 10914 faclbnd2 10924 abssq 11507 sqabs 11508 ef4p 12120 efgt1p2 12121 efi4p 12143 ef01bndlem 12182 cos01bnd 12184 oexpneg 12303 oddge22np1 12307 isprm5 12579 pythagtriplem4 12706 oddprmdvds 12792 dec2dvds 12849 dec5dvds 12850 2exp4 12869 2exp5 12870 2exp6 12871 2exp7 12872 2exp8 12873 2exp11 12874 2exp16 12875 3exp3 12876 2expltfac 12877 basendxltdsndx 13166 dsndxnplusgndx 13168 dsndxnmulrndx 13169 slotsdnscsi 13170 dsndxntsetndx 13171 slotsdifdsndx 13172 slotsdifunifndx 13179 prdsvalstrd 13218 cnfldstr 14435 setsmsdsg 15067 dveflem 15313 tangtx 15425 2logb9irr 15558 2logb9irrap 15564 binom4 15566 mersenne 15584 lgslem1 15592 gausslemma2dlem6 15659 lgseisenlem4 15665 2lgslem1c 15682 2lgslem3a 15685 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 1kp2ke3k 15860 ex-exp 15863 ex-fac 15864 |
| Copyright terms: Public domain | W3C validator |