| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version | ||
| Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9272 |
. 2
| |
| 2 | 1 | nnnn0i 9377 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-n0 9370 |
| This theorem is referenced by: nn0n0n1ge2 9517 7p6e13 9655 8p3e11 9658 8p5e13 9660 9p3e12 9665 9p4e13 9666 4t3e12 9675 4t4e16 9676 5t3e15 9678 5t5e25 9680 6t3e18 9682 6t5e30 9684 7t3e21 9687 7t4e28 9688 7t5e35 9689 7t6e42 9690 7t7e49 9691 8t3e24 9693 8t4e32 9694 8t5e40 9695 9t3e27 9700 9t4e36 9701 9t8e72 9705 9t9e81 9706 decbin3 9719 2eluzge0 9770 nn01to3 9812 xnn0le2is012 10062 fzo0to42pr 10426 nn0sqcl 10788 sqmul 10823 resqcl 10829 zsqcl 10832 cu2 10860 i3 10863 i4 10864 binom3 10879 nn0opthlem1d 10942 fac3 10954 faclbnd2 10964 abssq 11592 sqabs 11593 ef4p 12205 efgt1p2 12206 efi4p 12228 ef01bndlem 12267 cos01bnd 12269 oexpneg 12388 oddge22np1 12392 isprm5 12664 pythagtriplem4 12791 oddprmdvds 12877 dec2dvds 12934 dec5dvds 12935 2exp4 12954 2exp5 12955 2exp6 12956 2exp7 12957 2exp8 12958 2exp11 12959 2exp16 12960 3exp3 12961 2expltfac 12962 basendxltdsndx 13252 dsndxnplusgndx 13254 dsndxnmulrndx 13255 slotsdnscsi 13256 dsndxntsetndx 13257 slotsdifdsndx 13258 slotsdifunifndx 13265 prdsvalstrd 13304 cnfldstr 14522 setsmsdsg 15154 dveflem 15400 tangtx 15512 2logb9irr 15645 2logb9irrap 15651 binom4 15653 mersenne 15671 lgslem1 15679 gausslemma2dlem6 15746 lgseisenlem4 15752 2lgslem1c 15769 2lgslem3a 15772 2lgslem3b 15773 2lgslem3c 15774 2lgslem3d 15775 1kp2ke3k 16088 ex-exp 16091 ex-fac 16092 |
| Copyright terms: Public domain | W3C validator |