![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version |
Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
2nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 9143 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9248 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-n0 9241 |
This theorem is referenced by: nn0n0n1ge2 9387 7p6e13 9525 8p3e11 9528 8p5e13 9530 9p3e12 9535 9p4e13 9536 4t3e12 9545 4t4e16 9546 5t3e15 9548 5t5e25 9550 6t3e18 9552 6t5e30 9554 7t3e21 9557 7t4e28 9558 7t5e35 9559 7t6e42 9560 7t7e49 9561 8t3e24 9563 8t4e32 9564 8t5e40 9565 9t3e27 9570 9t4e36 9571 9t8e72 9575 9t9e81 9576 decbin3 9589 2eluzge0 9640 nn01to3 9682 xnn0le2is012 9932 fzo0to42pr 10287 nn0sqcl 10637 sqmul 10672 resqcl 10678 zsqcl 10681 cu2 10709 i3 10712 i4 10713 binom3 10728 nn0opthlem1d 10791 fac3 10803 faclbnd2 10813 abssq 11225 sqabs 11226 ef4p 11837 efgt1p2 11838 efi4p 11860 ef01bndlem 11899 cos01bnd 11901 oexpneg 12018 oddge22np1 12022 isprm5 12280 pythagtriplem4 12406 oddprmdvds 12492 basendxltdsndx 12832 dsndxnplusgndx 12834 dsndxnmulrndx 12835 slotsdnscsi 12836 dsndxntsetndx 12837 slotsdifdsndx 12838 slotsdifunifndx 12845 setsmsdsg 14648 dveflem 14872 tangtx 14973 2logb9irr 15103 2logb9irrap 15109 binom4 15111 lgslem1 15116 gausslemma2dlem6 15183 lgseisenlem4 15189 1kp2ke3k 15216 ex-exp 15219 ex-fac 15220 |
Copyright terms: Public domain | W3C validator |