Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2nn0 | Unicode version |
Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
2nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 9018 | . 2 | |
2 | 1 | nnnn0i 9122 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 c2 8908 cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-n0 9115 |
This theorem is referenced by: nn0n0n1ge2 9261 7p6e13 9399 8p3e11 9402 8p5e13 9404 9p3e12 9409 9p4e13 9410 4t3e12 9419 4t4e16 9420 5t3e15 9422 5t5e25 9424 6t3e18 9426 6t5e30 9428 7t3e21 9431 7t4e28 9432 7t5e35 9433 7t6e42 9434 7t7e49 9435 8t3e24 9437 8t4e32 9438 8t5e40 9439 9t3e27 9444 9t4e36 9445 9t8e72 9449 9t9e81 9450 decbin3 9463 2eluzge0 9513 nn01to3 9555 xnn0le2is012 9802 fzo0to42pr 10155 nn0sqcl 10482 sqmul 10517 resqcl 10522 zsqcl 10525 cu2 10553 i3 10556 i4 10557 binom3 10572 nn0opthlem1d 10633 fac3 10645 faclbnd2 10655 abssq 11023 sqabs 11024 ef4p 11635 efgt1p2 11636 efi4p 11658 ef01bndlem 11697 cos01bnd 11699 oexpneg 11814 oddge22np1 11818 isprm5 12074 pythagtriplem4 12200 oddprmdvds 12284 setsmsdsg 13120 dveflem 13327 tangtx 13399 2logb9irr 13529 2logb9irrap 13535 binom4 13537 lgslem1 13541 1kp2ke3k 13605 ex-exp 13608 ex-fac 13609 |
Copyright terms: Public domain | W3C validator |