| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn0 | Unicode version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 9204 |
. 2
| |
| 2 | 1 | nnnn0i 9303 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-n0 9296 |
| This theorem is referenced by: 8p3e11 9584 8p4e12 9585 8p5e13 9586 8p6e14 9587 8p7e15 9588 8p8e16 9589 9p9e18 9597 6t4e24 9609 7t5e35 9615 8t3e24 9619 8t4e32 9620 8t5e40 9621 8t6e48 9622 8t7e56 9623 8t8e64 9624 9t3e27 9626 9t9e81 9632 2exp7 12757 2exp11 12759 2exp16 12760 slotsdnscsi 13055 2lgslem3a 15570 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 basendxltedgfndx 15609 ex-exp 15663 |
| Copyright terms: Public domain | W3C validator |