ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8nn0 Unicode version

Theorem 8nn0 9353
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
8nn0  |-  8  e.  NN0

Proof of Theorem 8nn0
StepHypRef Expression
1 8nn 9239 . 2  |-  8  e.  NN
21nnnn0i 9338 1  |-  8  e.  NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   8c8 9128   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-n0 9331
This theorem is referenced by:  8p3e11  9619  8p4e12  9620  8p5e13  9621  8p6e14  9622  8p7e15  9623  8p8e16  9624  9p9e18  9632  6t4e24  9644  7t5e35  9650  8t3e24  9654  8t4e32  9655  8t5e40  9656  8t6e48  9657  8t7e56  9658  8t8e64  9659  9t3e27  9661  9t9e81  9667  2exp7  12872  2exp11  12874  2exp16  12875  slotsdnscsi  13170  2lgslem3a  15685  2lgslem3b  15686  2lgslem3c  15687  2lgslem3d  15688  basendxltedgfndx  15724  ex-exp  15863
  Copyright terms: Public domain W3C validator