| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn0 | Unicode version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 9239 |
. 2
| |
| 2 | 1 | nnnn0i 9338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-n0 9331 |
| This theorem is referenced by: 8p3e11 9619 8p4e12 9620 8p5e13 9621 8p6e14 9622 8p7e15 9623 8p8e16 9624 9p9e18 9632 6t4e24 9644 7t5e35 9650 8t3e24 9654 8t4e32 9655 8t5e40 9656 8t6e48 9657 8t7e56 9658 8t8e64 9659 9t3e27 9661 9t9e81 9667 2exp7 12872 2exp11 12874 2exp16 12875 slotsdnscsi 13170 2lgslem3a 15685 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 basendxltedgfndx 15724 ex-exp 15863 |
| Copyright terms: Public domain | W3C validator |