| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn0 | Unicode version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 9160 |
. 2
| |
| 2 | 1 | nnnn0i 9259 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 df-n0 9252 |
| This theorem is referenced by: 8p3e11 9539 8p4e12 9540 8p5e13 9541 8p6e14 9542 8p7e15 9543 8p8e16 9544 9p9e18 9552 6t4e24 9564 7t5e35 9570 8t3e24 9574 8t4e32 9575 8t5e40 9576 8t6e48 9577 8t7e56 9578 8t8e64 9579 9t3e27 9581 9t9e81 9587 2exp7 12613 2exp11 12615 2exp16 12616 slotsdnscsi 12906 2lgslem3a 15344 2lgslem3b 15345 2lgslem3c 15346 2lgslem3d 15347 ex-exp 15383 |
| Copyright terms: Public domain | W3C validator |