ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8nn0 Unicode version

Theorem 8nn0 8629
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
8nn0  |-  8  e.  NN0

Proof of Theorem 8nn0
StepHypRef Expression
1 8nn 8517 . 2  |-  8  e.  NN
21nnnn0i 8614 1  |-  8  e.  NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 1436   8c8 8413   NN0cn0 8606
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-cnex 7380  ax-resscn 7381  ax-1re 7383  ax-addrcl 7386
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-iota 4946  df-fv 4989  df-ov 5616  df-inn 8358  df-2 8416  df-3 8417  df-4 8418  df-5 8419  df-6 8420  df-7 8421  df-8 8422  df-n0 8607
This theorem is referenced by:  8p3e11  8889  8p4e12  8890  8p5e13  8891  8p6e14  8892  8p7e15  8893  8p8e16  8894  9p9e18  8902  6t4e24  8914  7t5e35  8920  8t3e24  8924  8t4e32  8925  8t5e40  8926  8t6e48  8927  8t7e56  8928  8t8e64  8929  9t3e27  8931  9t9e81  8937
  Copyright terms: Public domain W3C validator