| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 8nn0 | Unicode version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| 8nn0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 8nn 9158 | 
. 2
 | |
| 2 | 1 | nnnn0i 9257 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-n0 9250 | 
| This theorem is referenced by: 8p3e11 9537 8p4e12 9538 8p5e13 9539 8p6e14 9540 8p7e15 9541 8p8e16 9542 9p9e18 9550 6t4e24 9562 7t5e35 9568 8t3e24 9572 8t4e32 9573 8t5e40 9574 8t6e48 9575 8t7e56 9576 8t8e64 9577 9t3e27 9579 9t9e81 9585 2exp7 12603 2exp11 12605 2exp16 12606 slotsdnscsi 12896 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 ex-exp 15373 | 
| Copyright terms: Public domain | W3C validator |