| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn0 | Unicode version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 9278 |
. 2
| |
| 2 | 1 | nnnn0i 9377 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-n0 9370 |
| This theorem is referenced by: 8p3e11 9658 8p4e12 9659 8p5e13 9660 8p6e14 9661 8p7e15 9662 8p8e16 9663 9p9e18 9671 6t4e24 9683 7t5e35 9689 8t3e24 9693 8t4e32 9694 8t5e40 9695 8t6e48 9696 8t7e56 9697 8t8e64 9698 9t3e27 9700 9t9e81 9706 2exp7 12957 2exp11 12959 2exp16 12960 slotsdnscsi 13256 2lgslem3a 15772 2lgslem3b 15773 2lgslem3c 15774 2lgslem3d 15775 basendxltedgfndx 15811 ex-exp 16091 |
| Copyright terms: Public domain | W3C validator |