ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7nn0 Unicode version

Theorem 7nn0 9319
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
7nn0  |-  7  e.  NN0

Proof of Theorem 7nn0
StepHypRef Expression
1 7nn 9205 . 2  |-  7  e.  NN
21nnnn0i 9305 1  |-  7  e.  NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   7c7 9094   NN0cn0 9297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-n0 9298
This theorem is referenced by:  7p4e11  9581  7p5e12  9582  7p6e13  9583  7p7e14  9584  8p8e16  9591  9p8e17  9598  9p9e18  9599  7t3e21  9615  7t4e28  9616  7t5e35  9617  7t6e42  9618  7t7e49  9619  8t8e64  9626  9t3e27  9628  9t4e36  9629  9t8e72  9633  9t9e81  9634
  Copyright terms: Public domain W3C validator