![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 7nn0 | Unicode version |
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
7nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 9099 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9198 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-sep 4133 ax-cnex 7916 ax-resscn 7917 ax-1re 7919 ax-addrcl 7922 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-iota 5190 df-fv 5236 df-ov 5891 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-n0 9191 |
This theorem is referenced by: 7p4e11 9473 7p5e12 9474 7p6e13 9475 7p7e14 9476 8p8e16 9483 9p8e17 9490 9p9e18 9491 7t3e21 9507 7t4e28 9508 7t5e35 9509 7t6e42 9510 7t7e49 9511 8t8e64 9518 9t3e27 9520 9t4e36 9521 9t8e72 9525 9t9e81 9526 |
Copyright terms: Public domain | W3C validator |