| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn0 | Unicode version | ||
| Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 4nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 9202 |
. 2
| |
| 2 | 1 | nnnn0i 9305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 |
| This theorem is referenced by: 6p5e11 9578 7p5e12 9582 8p5e13 9588 8p7e15 9590 9p5e14 9595 9p6e15 9596 4t3e12 9603 4t4e16 9604 5t5e25 9608 6t4e24 9611 6t5e30 9612 7t3e21 9615 7t5e35 9617 7t7e49 9619 8t3e24 9621 8t4e32 9622 8t5e40 9623 8t6e48 9624 8t7e56 9625 8t8e64 9626 9t5e45 9630 9t6e54 9631 9t7e63 9632 decbin3 9647 fzo0to42pr 10351 4bc3eq4 10920 resin4p 12062 recos4p 12063 ef01bndlem 12100 sin01bnd 12101 cos01bnd 12102 prm23lt5 12619 2exp7 12790 2exp8 12791 2exp11 12792 2exp16 12793 2expltfac 12795 slotsdifdsndx 13090 slotsdifunifndx 13097 prdsvalstrd 13136 binom4 15484 2lgslem3a 15603 2lgslem3b 15604 2lgslem3c 15605 2lgslem3d 15606 ex-exp 15700 ex-fac 15701 ex-bc 15702 |
| Copyright terms: Public domain | W3C validator |