| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn0 | Unicode version | ||
| Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 4nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 9200 |
. 2
| |
| 2 | 1 | nnnn0i 9303 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 |
| This theorem is referenced by: 6p5e11 9576 7p5e12 9580 8p5e13 9586 8p7e15 9588 9p5e14 9593 9p6e15 9594 4t3e12 9601 4t4e16 9602 5t5e25 9606 6t4e24 9609 6t5e30 9610 7t3e21 9613 7t5e35 9615 7t7e49 9617 8t3e24 9619 8t4e32 9620 8t5e40 9621 8t6e48 9622 8t7e56 9623 8t8e64 9624 9t5e45 9628 9t6e54 9629 9t7e63 9630 decbin3 9645 fzo0to42pr 10349 4bc3eq4 10918 resin4p 12029 recos4p 12030 ef01bndlem 12067 sin01bnd 12068 cos01bnd 12069 prm23lt5 12586 2exp7 12757 2exp8 12758 2exp11 12759 2exp16 12760 2expltfac 12762 slotsdifdsndx 13057 slotsdifunifndx 13064 prdsvalstrd 13103 binom4 15451 2lgslem3a 15570 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 ex-exp 15663 ex-fac 15664 ex-bc 15665 |
| Copyright terms: Public domain | W3C validator |