Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4nn0 | Unicode version |
Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
4nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 9016 | . 2 | |
2 | 1 | nnnn0i 9118 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 c4 8906 cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-n0 9111 |
This theorem is referenced by: 6p5e11 9390 7p5e12 9394 8p5e13 9400 8p7e15 9402 9p5e14 9407 9p6e15 9408 4t3e12 9415 4t4e16 9416 5t5e25 9420 6t4e24 9423 6t5e30 9424 7t3e21 9427 7t5e35 9429 7t7e49 9431 8t3e24 9433 8t4e32 9434 8t5e40 9435 8t6e48 9436 8t7e56 9437 8t8e64 9438 9t5e45 9442 9t6e54 9443 9t7e63 9444 decbin3 9459 fzo0to42pr 10151 4bc3eq4 10682 resin4p 11655 recos4p 11656 ef01bndlem 11693 sin01bnd 11694 cos01bnd 11695 prm23lt5 12191 binom4 13497 ex-exp 13568 ex-fac 13569 ex-bc 13570 |
Copyright terms: Public domain | W3C validator |