![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4nn0 | Unicode version |
Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
4nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 9085 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9187 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4123 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5881 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-n0 9180 |
This theorem is referenced by: 6p5e11 9459 7p5e12 9463 8p5e13 9469 8p7e15 9471 9p5e14 9476 9p6e15 9477 4t3e12 9484 4t4e16 9485 5t5e25 9489 6t4e24 9492 6t5e30 9493 7t3e21 9496 7t5e35 9498 7t7e49 9500 8t3e24 9502 8t4e32 9503 8t5e40 9504 8t6e48 9505 8t7e56 9506 8t8e64 9507 9t5e45 9511 9t6e54 9512 9t7e63 9513 decbin3 9528 fzo0to42pr 10223 4bc3eq4 10756 resin4p 11729 recos4p 11730 ef01bndlem 11767 sin01bnd 11768 cos01bnd 11769 prm23lt5 12266 slotsdifdsndx 12682 slotsdifunifndx 12689 cnfldstr 13604 binom4 14558 ex-exp 14640 ex-fac 14641 ex-bc 14642 |
Copyright terms: Public domain | W3C validator |