Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 6nn0 | Unicode version |
Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 9043 | . 2 | |
2 | 1 | nnnn0i 9143 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 c6 8933 cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-n0 9136 |
This theorem is referenced by: 6p5e11 9415 6p6e12 9416 7p7e14 9421 8p7e15 9427 9p7e16 9434 9p8e17 9435 6t3e18 9447 6t4e24 9448 6t5e30 9449 6t6e36 9450 7t7e49 9456 8t3e24 9458 8t7e56 9462 8t8e64 9463 9t4e36 9466 9t5e45 9467 9t7e63 9469 9t8e72 9470 6lcm4e12 12041 ex-exp 13762 |
Copyright terms: Public domain | W3C validator |