![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6nn0 | Unicode version |
Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 9147 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 9248 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-n0 9241 |
This theorem is referenced by: 6p5e11 9520 6p6e12 9521 7p7e14 9526 8p7e15 9532 9p7e16 9539 9p8e17 9540 6t3e18 9552 6t4e24 9553 6t5e30 9554 6t6e36 9555 7t7e49 9561 8t3e24 9563 8t7e56 9567 8t8e64 9568 9t4e36 9571 9t5e45 9572 9t7e63 9574 9t8e72 9575 6lcm4e12 12225 slotsdnscsi 12836 ex-exp 15219 |
Copyright terms: Public domain | W3C validator |