| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6nn0 | Unicode version | ||
| Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9237 |
. 2
| |
| 2 | 1 | nnnn0i 9338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-n0 9331 |
| This theorem is referenced by: 6p5e11 9611 6p6e12 9612 7p7e14 9617 8p7e15 9623 9p7e16 9630 9p8e17 9631 6t3e18 9643 6t4e24 9644 6t5e30 9645 6t6e36 9646 7t7e49 9652 8t3e24 9654 8t7e56 9658 8t8e64 9659 9t4e36 9662 9t5e45 9663 9t7e63 9665 9t8e72 9666 6lcm4e12 12524 2exp7 12872 2exp8 12873 2exp11 12874 2exp16 12875 2expltfac 12877 slotsdnscsi 13170 ex-exp 15863 |
| Copyright terms: Public domain | W3C validator |