| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6nn0 | Unicode version | ||
| Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9276 |
. 2
| |
| 2 | 1 | nnnn0i 9377 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-n0 9370 |
| This theorem is referenced by: 6p5e11 9650 6p6e12 9651 7p7e14 9656 8p7e15 9662 9p7e16 9669 9p8e17 9670 6t3e18 9682 6t4e24 9683 6t5e30 9684 6t6e36 9685 7t7e49 9691 8t3e24 9693 8t7e56 9697 8t8e64 9698 9t4e36 9701 9t5e45 9702 9t7e63 9704 9t8e72 9705 6lcm4e12 12609 2exp7 12957 2exp8 12958 2exp11 12959 2exp16 12960 2expltfac 12962 slotsdnscsi 13256 ex-exp 16091 |
| Copyright terms: Public domain | W3C validator |