Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0i | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
Ref | Expression |
---|---|
nnnn0.1 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | nnnn0 9121 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ℕcn 8857 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-n0 9115 |
This theorem is referenced by: 1nn0 9130 2nn0 9131 3nn0 9132 4nn0 9133 5nn0 9134 6nn0 9135 7nn0 9136 8nn0 9137 9nn0 9138 numlt 9346 declei 9357 numlti 9358 pockthi 12288 |
Copyright terms: Public domain | W3C validator |