| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0i | GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
| Ref | Expression |
|---|---|
| nnnn0.1 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | nnnn0 9322 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ℕcn 9056 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-n0 9316 |
| This theorem is referenced by: 1nn0 9331 2nn0 9332 3nn0 9333 4nn0 9334 5nn0 9335 6nn0 9336 7nn0 9337 8nn0 9338 9nn0 9339 numlt 9548 declei 9559 numlti 9560 pockthi 12756 dec5dvds2 12811 modxp1i 12816 |
| Copyright terms: Public domain | W3C validator |