| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0i | GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
| Ref | Expression |
|---|---|
| nnnn0.1 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | nnnn0 9372 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-n0 9366 |
| This theorem is referenced by: 1nn0 9381 2nn0 9382 3nn0 9383 4nn0 9384 5nn0 9385 6nn0 9386 7nn0 9387 8nn0 9388 9nn0 9389 numlt 9598 declei 9609 numlti 9610 pockthi 12876 dec5dvds2 12931 modxp1i 12936 |
| Copyright terms: Public domain | W3C validator |