![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnn0i | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
Ref | Expression |
---|---|
nnnn0.1 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | nnnn0 9247 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ℕcn 8982 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-n0 9241 |
This theorem is referenced by: 1nn0 9256 2nn0 9257 3nn0 9258 4nn0 9259 5nn0 9260 6nn0 9261 7nn0 9262 8nn0 9263 9nn0 9264 numlt 9472 declei 9483 numlti 9484 pockthi 12496 |
Copyright terms: Public domain | W3C validator |