Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0i | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
Ref | Expression |
---|---|
nnnn0.1 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | nnnn0 9154 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 ℕcn 8890 ℕ0cn0 9147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-n0 9148 |
This theorem is referenced by: 1nn0 9163 2nn0 9164 3nn0 9165 4nn0 9166 5nn0 9167 6nn0 9168 7nn0 9169 8nn0 9170 9nn0 9171 numlt 9379 declei 9390 numlti 9391 pockthi 12321 |
Copyright terms: Public domain | W3C validator |