ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbi2dv Unicode version

Theorem opabbi2dv 4760
Description: Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2289. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
opabbi2dv.1  |-  Rel  A
opabbi2dv.3  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  ps )
)
Assertion
Ref Expression
opabbi2dv  |-  ( ph  ->  A  =  { <. x ,  y >.  |  ps } )
Distinct variable groups:    x, y, A    ph, x, y
Allowed substitution hints:    ps( x, y)

Proof of Theorem opabbi2dv
StepHypRef Expression
1 opabbi2dv.1 . . 3  |-  Rel  A
2 opabid2 4742 . . 3  |-  ( Rel 
A  ->  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A )
31, 2ax-mp 5 . 2  |-  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A
4 opabbi2dv.3 . . 3  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  ps )
)
54opabbidv 4055 . 2  |-  ( ph  ->  { <. x ,  y
>.  |  <. x ,  y >.  e.  A }  =  { <. x ,  y >.  |  ps } )
63, 5eqtr3id 2217 1  |-  ( ph  ->  A  =  { <. x ,  y >.  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   <.cop 3586   {copab 4049   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617  df-rel 4618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator