ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbi2dv Unicode version

Theorem opabbi2dv 4815
Description: Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2315. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
opabbi2dv.1  |-  Rel  A
opabbi2dv.3  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  ps )
)
Assertion
Ref Expression
opabbi2dv  |-  ( ph  ->  A  =  { <. x ,  y >.  |  ps } )
Distinct variable groups:    x, y, A    ph, x, y
Allowed substitution hints:    ps( x, y)

Proof of Theorem opabbi2dv
StepHypRef Expression
1 opabbi2dv.1 . . 3  |-  Rel  A
2 opabid2 4797 . . 3  |-  ( Rel 
A  ->  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A )
31, 2ax-mp 5 . 2  |-  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A
4 opabbi2dv.3 . . 3  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  ps )
)
54opabbidv 4099 . 2  |-  ( ph  ->  { <. x ,  y
>.  |  <. x ,  y >.  e.  A }  =  { <. x ,  y >.  |  ps } )
63, 5eqtr3id 2243 1  |-  ( ph  ->  A  =  { <. x ,  y >.  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   <.cop 3625   {copab 4093   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator