ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxpf Unicode version

Theorem iunxpf 4584
Description: Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
iunxpf.1  |-  F/_ y C
iunxpf.2  |-  F/_ z C
iunxpf.3  |-  F/_ x D
iunxpf.4  |-  ( x  =  <. y ,  z
>.  ->  C  =  D )
Assertion
Ref Expression
iunxpf  |-  U_ x  e.  ( A  X.  B
) C  =  U_ y  e.  A  U_ z  e.  B  D
Distinct variable groups:    x, y, A   
x, z, B, y
Allowed substitution hints:    A( z)    C( x, y, z)    D( x, y, z)

Proof of Theorem iunxpf
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 iunxpf.1 . . . . 5  |-  F/_ y C
21nfcri 2222 . . . 4  |-  F/ y  w  e.  C
3 iunxpf.2 . . . . 5  |-  F/_ z C
43nfcri 2222 . . . 4  |-  F/ z  w  e.  C
5 iunxpf.3 . . . . 5  |-  F/_ x D
65nfcri 2222 . . . 4  |-  F/ x  w  e.  D
7 iunxpf.4 . . . . 5  |-  ( x  =  <. y ,  z
>.  ->  C  =  D )
87eleq2d 2157 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( w  e.  C  <->  w  e.  D
) )
92, 4, 6, 8rexxpf 4583 . . 3  |-  ( E. x  e.  ( A  X.  B ) w  e.  C  <->  E. y  e.  A  E. z  e.  B  w  e.  D )
10 eliun 3734 . . 3  |-  ( w  e.  U_ x  e.  ( A  X.  B
) C  <->  E. x  e.  ( A  X.  B
) w  e.  C
)
11 eliun 3734 . . . 4  |-  ( w  e.  U_ y  e.  A  U_ z  e.  B  D  <->  E. y  e.  A  w  e.  U_ z  e.  B  D
)
12 eliun 3734 . . . . 5  |-  ( w  e.  U_ z  e.  B  D  <->  E. z  e.  B  w  e.  D )
1312rexbii 2385 . . . 4  |-  ( E. y  e.  A  w  e.  U_ z  e.  B  D  <->  E. y  e.  A  E. z  e.  B  w  e.  D )
1411, 13bitri 182 . . 3  |-  ( w  e.  U_ y  e.  A  U_ z  e.  B  D  <->  E. y  e.  A  E. z  e.  B  w  e.  D )
159, 10, 143bitr4i 210 . 2  |-  ( w  e.  U_ x  e.  ( A  X.  B
) C  <->  w  e.  U_ y  e.  A  U_ z  e.  B  D
)
1615eqriv 2085 1  |-  U_ x  e.  ( A  X.  B
) C  =  U_ y  e.  A  U_ z  e.  B  D
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289    e. wcel 1438   F/_wnfc 2215   E.wrex 2360   <.cop 3449   U_ciun 3730    X. cxp 4436
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-iun 3732  df-opab 3900  df-xp 4444  df-rel 4445
This theorem is referenced by:  dfmpt2  5988
  Copyright terms: Public domain W3C validator