ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxpf Unicode version

Theorem iunxpf 4776
Description: Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
iunxpf.1  |-  F/_ y C
iunxpf.2  |-  F/_ z C
iunxpf.3  |-  F/_ x D
iunxpf.4  |-  ( x  =  <. y ,  z
>.  ->  C  =  D )
Assertion
Ref Expression
iunxpf  |-  U_ x  e.  ( A  X.  B
) C  =  U_ y  e.  A  U_ z  e.  B  D
Distinct variable groups:    x, y, A   
x, z, B, y
Allowed substitution hints:    A( z)    C( x, y, z)    D( x, y, z)

Proof of Theorem iunxpf
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 iunxpf.1 . . . . 5  |-  F/_ y C
21nfcri 2313 . . . 4  |-  F/ y  w  e.  C
3 iunxpf.2 . . . . 5  |-  F/_ z C
43nfcri 2313 . . . 4  |-  F/ z  w  e.  C
5 iunxpf.3 . . . . 5  |-  F/_ x D
65nfcri 2313 . . . 4  |-  F/ x  w  e.  D
7 iunxpf.4 . . . . 5  |-  ( x  =  <. y ,  z
>.  ->  C  =  D )
87eleq2d 2247 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( w  e.  C  <->  w  e.  D
) )
92, 4, 6, 8rexxpf 4775 . . 3  |-  ( E. x  e.  ( A  X.  B ) w  e.  C  <->  E. y  e.  A  E. z  e.  B  w  e.  D )
10 eliun 3891 . . 3  |-  ( w  e.  U_ x  e.  ( A  X.  B
) C  <->  E. x  e.  ( A  X.  B
) w  e.  C
)
11 eliun 3891 . . . 4  |-  ( w  e.  U_ y  e.  A  U_ z  e.  B  D  <->  E. y  e.  A  w  e.  U_ z  e.  B  D
)
12 eliun 3891 . . . . 5  |-  ( w  e.  U_ z  e.  B  D  <->  E. z  e.  B  w  e.  D )
1312rexbii 2484 . . . 4  |-  ( E. y  e.  A  w  e.  U_ z  e.  B  D  <->  E. y  e.  A  E. z  e.  B  w  e.  D )
1411, 13bitri 184 . . 3  |-  ( w  e.  U_ y  e.  A  U_ z  e.  B  D  <->  E. y  e.  A  E. z  e.  B  w  e.  D )
159, 10, 143bitr4i 212 . 2  |-  ( w  e.  U_ x  e.  ( A  X.  B
) C  <->  w  e.  U_ y  e.  A  U_ z  e.  B  D
)
1615eqriv 2174 1  |-  U_ x  e.  ( A  X.  B
) C  =  U_ y  e.  A  U_ z  e.  B  D
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   F/_wnfc 2306   E.wrex 2456   <.cop 3596   U_ciun 3887    X. cxp 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-iun 3889  df-opab 4066  df-xp 4633  df-rel 4634
This theorem is referenced by:  dfmpo  6224
  Copyright terms: Public domain W3C validator