ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopab2 Unicode version

Theorem opelopab2 4272
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by NM, 14-Oct-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopab2.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopab2.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
opelopab2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ch ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem opelopab2
StepHypRef Expression
1 opelopab2.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 opelopab2.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
31, 2sylan9bb 462 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ch )
)
43opelopab2a 4267 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   <.cop 3597   {copab 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067
This theorem is referenced by:  brecop  6627  netap  7255  2oneel  7257  2omotaplemap  7258  2omotaplemst  7259  divides  11798
  Copyright terms: Public domain W3C validator