| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelopab2 | Unicode version | ||
| Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by NM, 14-Oct-2007.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopab2.1 |
|
| opelopab2.2 |
|
| Ref | Expression |
|---|---|
| opelopab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopab2.1 |
. . 3
| |
| 2 | opelopab2.2 |
. . 3
| |
| 3 | 1, 2 | sylan9bb 462 |
. 2
|
| 4 | 3 | opelopab2a 4300 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 |
| This theorem is referenced by: brecop 6693 netap 7337 2oneel 7339 2omotaplemap 7340 2omotaplemst 7341 divides 11971 |
| Copyright terms: Public domain | W3C validator |