ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabgf GIF version

Theorem opelopabgf 4304
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 4302 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
Hypotheses
Ref Expression
opelopabgf.x 𝑥𝜓
opelopabgf.y 𝑦𝜒
opelopabgf.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabgf.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopabgf ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opelopabgf
StepHypRef Expression
1 opelopabsb 4294 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 nfcv 2339 . . . . 5 𝑥𝐵
3 opelopabgf.x . . . . 5 𝑥𝜓
42, 3nfsbcw 3119 . . . 4 𝑥[𝐵 / 𝑦]𝜓
5 opelopabgf.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
65sbcbidv 3048 . . . 4 (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
74, 6sbciegf 3021 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
8 opelopabgf.y . . . 4 𝑦𝜒
9 opelopabgf.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
108, 9sbciegf 3021 . . 3 (𝐵𝑊 → ([𝐵 / 𝑦]𝜓𝜒))
117, 10sylan9bb 462 . 2 ((𝐴𝑉𝐵𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜒))
121, 11bitrid 192 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wnf 1474  wcel 2167  [wsbc 2989  cop 3625  {copab 4093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095
This theorem is referenced by:  opabfi  6999
  Copyright terms: Public domain W3C validator