ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabgf GIF version

Theorem opelopabgf 4337
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 4335 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
Hypotheses
Ref Expression
opelopabgf.x 𝑥𝜓
opelopabgf.y 𝑦𝜒
opelopabgf.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabgf.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopabgf ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opelopabgf
StepHypRef Expression
1 opelopabsb 4327 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 nfcv 2352 . . . . 5 𝑥𝐵
3 opelopabgf.x . . . . 5 𝑥𝜓
42, 3nfsbcw 3139 . . . 4 𝑥[𝐵 / 𝑦]𝜓
5 opelopabgf.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
65sbcbidv 3067 . . . 4 (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
74, 6sbciegf 3040 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
8 opelopabgf.y . . . 4 𝑦𝜒
9 opelopabgf.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
108, 9sbciegf 3040 . . 3 (𝐵𝑊 → ([𝐵 / 𝑦]𝜓𝜒))
117, 10sylan9bb 462 . 2 ((𝐴𝑉𝐵𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜒))
121, 11bitrid 192 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wnf 1486  wcel 2180  [wsbc 3008  cop 3649  {copab 4123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-opab 4125
This theorem is referenced by:  opabfi  7068
  Copyright terms: Public domain W3C validator