| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelopabgf | GIF version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 4335 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.) |
| Ref | Expression |
|---|---|
| opelopabgf.x | ⊢ Ⅎ𝑥𝜓 |
| opelopabgf.y | ⊢ Ⅎ𝑦𝜒 |
| opelopabgf.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| opelopabgf.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opelopabgf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabsb 4327 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
| 2 | nfcv 2352 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 3 | opelopabgf.x | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfsbcw 3139 | . . . 4 ⊢ Ⅎ𝑥[𝐵 / 𝑦]𝜓 |
| 5 | opelopabgf.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | sbcbidv 3067 | . . . 4 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
| 7 | 4, 6 | sbciegf 3040 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
| 8 | opelopabgf.y | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
| 9 | opelopabgf.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 10 | 8, 9 | sbciegf 3040 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 11 | 7, 10 | sylan9bb 462 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜒)) |
| 12 | 1, 11 | bitrid 192 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 Ⅎwnf 1486 ∈ wcel 2180 [wsbc 3008 〈cop 3649 {copab 4123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-opab 4125 |
| This theorem is referenced by: opabfi 7068 |
| Copyright terms: Public domain | W3C validator |