| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelopabgf | GIF version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 4318 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.) |
| Ref | Expression |
|---|---|
| opelopabgf.x | ⊢ Ⅎ𝑥𝜓 |
| opelopabgf.y | ⊢ Ⅎ𝑦𝜒 |
| opelopabgf.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| opelopabgf.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opelopabgf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabsb 4310 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
| 2 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 3 | opelopabgf.x | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfsbcw 3129 | . . . 4 ⊢ Ⅎ𝑥[𝐵 / 𝑦]𝜓 |
| 5 | opelopabgf.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | sbcbidv 3058 | . . . 4 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
| 7 | 4, 6 | sbciegf 3031 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
| 8 | opelopabgf.y | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
| 9 | opelopabgf.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 10 | 8, 9 | sbciegf 3031 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 11 | 7, 10 | sylan9bb 462 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜒)) |
| 12 | 1, 11 | bitrid 192 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2177 [wsbc 2999 〈cop 3637 {copab 4108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-opab 4110 |
| This theorem is referenced by: opabfi 7042 |
| Copyright terms: Public domain | W3C validator |