ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabfi Unicode version

Theorem opabfi 7108
Description: Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
Hypotheses
Ref Expression
opabfi.s  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }
opabfi.a  |-  ( ph  ->  A  e.  Fin )
opabfi.b  |-  ( ph  ->  B  e.  Fin )
opabfi.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  B DECID  ps )
Assertion
Ref Expression
opabfi  |-  ( ph  ->  S  e.  Fin )
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    S( x, y)

Proof of Theorem opabfi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 opabfi.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 opabfi.b . . 3  |-  ( ph  ->  B  e.  Fin )
3 xpfi 7102 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )
41, 2, 3syl2anc 411 . 2  |-  ( ph  ->  ( A  X.  B
)  e.  Fin )
5 opabfi.s . . . 4  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }
6 opabssxp 4793 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) }  C_  ( A  X.  B )
75, 6eqsstri 3256 . . 3  |-  S  C_  ( A  X.  B
)
87a1i 9 . 2  |-  ( ph  ->  S  C_  ( A  X.  B ) )
9 xp2nd 6318 . . . . . 6  |-  ( z  e.  ( A  X.  B )  ->  ( 2nd `  z )  e.  B )
109adantl 277 . . . . 5  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  ( 2nd `  z )  e.  B )
11 xp1st 6317 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( 1st `  z )  e.  A )
1211adantl 277 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  ( 1st `  z )  e.  A )
13 opabfi.dc . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  B DECID  ps )
1413adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  A. x  e.  A  A. y  e.  B DECID  ps )
15 nfcv 2372 . . . . . . . 8  |-  F/_ x B
16 nfsbc1v 3047 . . . . . . . . 9  |-  F/ x [. ( 1st `  z
)  /  x ]. ps
1716nfdc 1705 . . . . . . . 8  |-  F/ xDECID  [. ( 1st `  z )  /  x ]. ps
1815, 17nfralw 2567 . . . . . . 7  |-  F/ x A. y  e.  B DECID  [. ( 1st `  z )  /  x ]. ps
19 sbceq1a 3038 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  ( ps  <->  [. ( 1st `  z
)  /  x ]. ps ) )
2019dcbid 843 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  (DECID  ps  <-> DECID  [. ( 1st `  z
)  /  x ]. ps ) )
2120ralbidv 2530 . . . . . . 7  |-  ( x  =  ( 1st `  z
)  ->  ( A. y  e.  B DECID  ps  <->  A. y  e.  B DECID  [. ( 1st `  z
)  /  x ]. ps ) )
2218, 21rspc 2901 . . . . . 6  |-  ( ( 1st `  z )  e.  A  ->  ( A. x  e.  A  A. y  e.  B DECID  ps  ->  A. y  e.  B DECID  [. ( 1st `  z )  /  x ]. ps ) )
2312, 14, 22sylc 62 . . . . 5  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  A. y  e.  B DECID  [. ( 1st `  z
)  /  x ]. ps )
24 nfsbc1v 3047 . . . . . . 7  |-  F/ y
[. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps
2524nfdc 1705 . . . . . 6  |-  F/ yDECID  [. ( 2nd `  z )  /  y ]. [. ( 1st `  z )  /  x ]. ps
26 sbceq1a 3038 . . . . . . 7  |-  ( y  =  ( 2nd `  z
)  ->  ( [. ( 1st `  z )  /  x ]. ps  <->  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
2726dcbid 843 . . . . . 6  |-  ( y  =  ( 2nd `  z
)  ->  (DECID  [. ( 1st `  z )  /  x ]. ps  <-> DECID  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
2825, 27rspc 2901 . . . . 5  |-  ( ( 2nd `  z )  e.  B  ->  ( A. y  e.  B DECID  [. ( 1st `  z )  /  x ]. ps  -> DECID  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
2910, 23, 28sylc 62 . . . 4  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  -> DECID  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps )
30 nfv 1574 . . . . . . . . . 10  |-  F/ x
( ( 1st `  z
)  e.  A  /\  y  e.  B )
3130, 16nfan 1611 . . . . . . . . 9  |-  F/ x
( ( ( 1st `  z )  e.  A  /\  y  e.  B
)  /\  [. ( 1st `  z )  /  x ]. ps )
32 nfv 1574 . . . . . . . . . 10  |-  F/ y ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B )
3332, 24nfan 1611 . . . . . . . . 9  |-  F/ y ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z
)  e.  B )  /\  [. ( 2nd `  z )  /  y ]. [. ( 1st `  z
)  /  x ]. ps )
34 eleq1 2292 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  z
)  ->  ( x  e.  A  <->  ( 1st `  z
)  e.  A ) )
3534anbi1d 465 . . . . . . . . . 10  |-  ( x  =  ( 1st `  z
)  ->  ( (
x  e.  A  /\  y  e.  B )  <->  ( ( 1st `  z
)  e.  A  /\  y  e.  B )
) )
3635, 19anbi12d 473 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  ( (
( x  e.  A  /\  y  e.  B
)  /\  ps )  <->  ( ( ( 1st `  z
)  e.  A  /\  y  e.  B )  /\  [. ( 1st `  z
)  /  x ]. ps ) ) )
37 eleq1 2292 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  z
)  ->  ( y  e.  B  <->  ( 2nd `  z
)  e.  B ) )
3837anbi2d 464 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( 1st `  z
)  e.  A  /\  y  e.  B )  <->  ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B ) ) )
3938, 26anbi12d 473 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( ( 1st `  z
)  e.  A  /\  y  e.  B )  /\  [. ( 1st `  z
)  /  x ]. ps )  <->  ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  /\  [. ( 2nd `  z )  / 
y ]. [. ( 1st `  z )  /  x ]. ps ) ) )
4031, 33, 36, 39opelopabgf 4358 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B )  -> 
( <. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  <->  ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  /\  [. ( 2nd `  z )  / 
y ]. [. ( 1st `  z )  /  x ]. ps ) ) )
4111, 9, 40syl2anc 411 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( <. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  <->  ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  /\  [. ( 2nd `  z )  / 
y ]. [. ( 1st `  z )  /  x ]. ps ) ) )
42 1st2nd2 6327 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
435a1i 9 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  S  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) } )
4442, 43eleq12d 2300 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  (
z  e.  S  <->  <. ( 1st `  z ) ,  ( 2nd `  z )
>.  e.  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) } ) )
45 ibar 301 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B )  -> 
( [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps 
<->  ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z
)  e.  B )  /\  [. ( 2nd `  z )  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) ) )
4611, 9, 45syl2anc 411 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps 
<->  ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z
)  e.  B )  /\  [. ( 2nd `  z )  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) ) )
4741, 44, 463bitr4d 220 . . . . . 6  |-  ( z  e.  ( A  X.  B )  ->  (
z  e.  S  <->  [. ( 2nd `  z )  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
4847dcbid 843 . . . . 5  |-  ( z  e.  ( A  X.  B )  ->  (DECID  z  e.  S  <-> DECID  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
4948adantl 277 . . . 4  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  (DECID  z  e.  S  <-> DECID  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
5029, 49mpbird 167 . . 3  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  -> DECID  z  e.  S
)
5150ralrimiva 2603 . 2  |-  ( ph  ->  A. z  e.  ( A  X.  B )DECID  z  e.  S )
52 ssfidc 7107 . 2  |-  ( ( ( A  X.  B
)  e.  Fin  /\  S  C_  ( A  X.  B )  /\  A. z  e.  ( A  X.  B )DECID  z  e.  S )  ->  S  e.  Fin )
534, 8, 51, 52syl3anc 1271 1  |-  ( ph  ->  S  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   [.wsbc 3028    C_ wss 3197   <.cop 3669   {copab 4144    X. cxp 4717   ` cfv 5318   1stc1st 6290   2ndc2nd 6291   Fincfn 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6292  df-2nd 6293  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898
This theorem is referenced by:  lgsquadlemsfi  15762  lgsquadlem3  15766
  Copyright terms: Public domain W3C validator