| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabfi | Unicode version | ||
| Description: Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.) |
| Ref | Expression |
|---|---|
| opabfi.s |
|
| opabfi.a |
|
| opabfi.b |
|
| opabfi.dc |
|
| Ref | Expression |
|---|---|
| opabfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabfi.a |
. . 3
| |
| 2 | opabfi.b |
. . 3
| |
| 3 | xpfi 6993 |
. . 3
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. 2
|
| 5 | opabfi.s |
. . . 4
| |
| 6 | opabssxp 4737 |
. . . 4
| |
| 7 | 5, 6 | eqsstri 3215 |
. . 3
|
| 8 | 7 | a1i 9 |
. 2
|
| 9 | xp2nd 6224 |
. . . . . 6
| |
| 10 | 9 | adantl 277 |
. . . . 5
|
| 11 | xp1st 6223 |
. . . . . . 7
| |
| 12 | 11 | adantl 277 |
. . . . . 6
|
| 13 | opabfi.dc |
. . . . . . 7
| |
| 14 | 13 | adantr 276 |
. . . . . 6
|
| 15 | nfcv 2339 |
. . . . . . . 8
| |
| 16 | nfsbc1v 3008 |
. . . . . . . . 9
| |
| 17 | 16 | nfdc 1673 |
. . . . . . . 8
|
| 18 | 15, 17 | nfralw 2534 |
. . . . . . 7
|
| 19 | sbceq1a 2999 |
. . . . . . . . 9
| |
| 20 | 19 | dcbid 839 |
. . . . . . . 8
|
| 21 | 20 | ralbidv 2497 |
. . . . . . 7
|
| 22 | 18, 21 | rspc 2862 |
. . . . . 6
|
| 23 | 12, 14, 22 | sylc 62 |
. . . . 5
|
| 24 | nfsbc1v 3008 |
. . . . . . 7
| |
| 25 | 24 | nfdc 1673 |
. . . . . 6
|
| 26 | sbceq1a 2999 |
. . . . . . 7
| |
| 27 | 26 | dcbid 839 |
. . . . . 6
|
| 28 | 25, 27 | rspc 2862 |
. . . . 5
|
| 29 | 10, 23, 28 | sylc 62 |
. . . 4
|
| 30 | nfv 1542 |
. . . . . . . . . 10
| |
| 31 | 30, 16 | nfan 1579 |
. . . . . . . . 9
|
| 32 | nfv 1542 |
. . . . . . . . . 10
| |
| 33 | 32, 24 | nfan 1579 |
. . . . . . . . 9
|
| 34 | eleq1 2259 |
. . . . . . . . . . 11
| |
| 35 | 34 | anbi1d 465 |
. . . . . . . . . 10
|
| 36 | 35, 19 | anbi12d 473 |
. . . . . . . . 9
|
| 37 | eleq1 2259 |
. . . . . . . . . . 11
| |
| 38 | 37 | anbi2d 464 |
. . . . . . . . . 10
|
| 39 | 38, 26 | anbi12d 473 |
. . . . . . . . 9
|
| 40 | 31, 33, 36, 39 | opelopabgf 4304 |
. . . . . . . 8
|
| 41 | 11, 9, 40 | syl2anc 411 |
. . . . . . 7
|
| 42 | 1st2nd2 6233 |
. . . . . . . 8
| |
| 43 | 5 | a1i 9 |
. . . . . . . 8
|
| 44 | 42, 43 | eleq12d 2267 |
. . . . . . 7
|
| 45 | ibar 301 |
. . . . . . . 8
| |
| 46 | 11, 9, 45 | syl2anc 411 |
. . . . . . 7
|
| 47 | 41, 44, 46 | 3bitr4d 220 |
. . . . . 6
|
| 48 | 47 | dcbid 839 |
. . . . 5
|
| 49 | 48 | adantl 277 |
. . . 4
|
| 50 | 29, 49 | mpbird 167 |
. . 3
|
| 51 | 50 | ralrimiva 2570 |
. 2
|
| 52 | ssfidc 6998 |
. 2
| |
| 53 | 4, 8, 51, 52 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-er 6592 df-en 6800 df-fin 6802 |
| This theorem is referenced by: lgsquadlemsfi 15316 lgsquadlem3 15320 |
| Copyright terms: Public domain | W3C validator |