| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabfi | Unicode version | ||
| Description: Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.) |
| Ref | Expression |
|---|---|
| opabfi.s |
|
| opabfi.a |
|
| opabfi.b |
|
| opabfi.dc |
|
| Ref | Expression |
|---|---|
| opabfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabfi.a |
. . 3
| |
| 2 | opabfi.b |
. . 3
| |
| 3 | xpfi 7062 |
. . 3
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. 2
|
| 5 | opabfi.s |
. . . 4
| |
| 6 | opabssxp 4770 |
. . . 4
| |
| 7 | 5, 6 | eqsstri 3236 |
. . 3
|
| 8 | 7 | a1i 9 |
. 2
|
| 9 | xp2nd 6282 |
. . . . . 6
| |
| 10 | 9 | adantl 277 |
. . . . 5
|
| 11 | xp1st 6281 |
. . . . . . 7
| |
| 12 | 11 | adantl 277 |
. . . . . 6
|
| 13 | opabfi.dc |
. . . . . . 7
| |
| 14 | 13 | adantr 276 |
. . . . . 6
|
| 15 | nfcv 2352 |
. . . . . . . 8
| |
| 16 | nfsbc1v 3027 |
. . . . . . . . 9
| |
| 17 | 16 | nfdc 1685 |
. . . . . . . 8
|
| 18 | 15, 17 | nfralw 2547 |
. . . . . . 7
|
| 19 | sbceq1a 3018 |
. . . . . . . . 9
| |
| 20 | 19 | dcbid 842 |
. . . . . . . 8
|
| 21 | 20 | ralbidv 2510 |
. . . . . . 7
|
| 22 | 18, 21 | rspc 2881 |
. . . . . 6
|
| 23 | 12, 14, 22 | sylc 62 |
. . . . 5
|
| 24 | nfsbc1v 3027 |
. . . . . . 7
| |
| 25 | 24 | nfdc 1685 |
. . . . . 6
|
| 26 | sbceq1a 3018 |
. . . . . . 7
| |
| 27 | 26 | dcbid 842 |
. . . . . 6
|
| 28 | 25, 27 | rspc 2881 |
. . . . 5
|
| 29 | 10, 23, 28 | sylc 62 |
. . . 4
|
| 30 | nfv 1554 |
. . . . . . . . . 10
| |
| 31 | 30, 16 | nfan 1591 |
. . . . . . . . 9
|
| 32 | nfv 1554 |
. . . . . . . . . 10
| |
| 33 | 32, 24 | nfan 1591 |
. . . . . . . . 9
|
| 34 | eleq1 2272 |
. . . . . . . . . . 11
| |
| 35 | 34 | anbi1d 465 |
. . . . . . . . . 10
|
| 36 | 35, 19 | anbi12d 473 |
. . . . . . . . 9
|
| 37 | eleq1 2272 |
. . . . . . . . . . 11
| |
| 38 | 37 | anbi2d 464 |
. . . . . . . . . 10
|
| 39 | 38, 26 | anbi12d 473 |
. . . . . . . . 9
|
| 40 | 31, 33, 36, 39 | opelopabgf 4337 |
. . . . . . . 8
|
| 41 | 11, 9, 40 | syl2anc 411 |
. . . . . . 7
|
| 42 | 1st2nd2 6291 |
. . . . . . . 8
| |
| 43 | 5 | a1i 9 |
. . . . . . . 8
|
| 44 | 42, 43 | eleq12d 2280 |
. . . . . . 7
|
| 45 | ibar 301 |
. . . . . . . 8
| |
| 46 | 11, 9, 45 | syl2anc 411 |
. . . . . . 7
|
| 47 | 41, 44, 46 | 3bitr4d 220 |
. . . . . 6
|
| 48 | 47 | dcbid 842 |
. . . . 5
|
| 49 | 48 | adantl 277 |
. . . 4
|
| 50 | 29, 49 | mpbird 167 |
. . 3
|
| 51 | 50 | ralrimiva 2583 |
. 2
|
| 52 | ssfidc 7067 |
. 2
| |
| 53 | 4, 8, 51, 52 | syl3anc 1252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-1st 6256 df-2nd 6257 df-1o 6532 df-er 6650 df-en 6858 df-fin 6860 |
| This theorem is referenced by: lgsquadlemsfi 15719 lgsquadlem3 15723 |
| Copyright terms: Public domain | W3C validator |