ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabfi Unicode version

Theorem opabfi 6999
Description: Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
Hypotheses
Ref Expression
opabfi.s  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }
opabfi.a  |-  ( ph  ->  A  e.  Fin )
opabfi.b  |-  ( ph  ->  B  e.  Fin )
opabfi.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  B DECID  ps )
Assertion
Ref Expression
opabfi  |-  ( ph  ->  S  e.  Fin )
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    S( x, y)

Proof of Theorem opabfi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 opabfi.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 opabfi.b . . 3  |-  ( ph  ->  B  e.  Fin )
3 xpfi 6993 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )
41, 2, 3syl2anc 411 . 2  |-  ( ph  ->  ( A  X.  B
)  e.  Fin )
5 opabfi.s . . . 4  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }
6 opabssxp 4737 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) }  C_  ( A  X.  B )
75, 6eqsstri 3215 . . 3  |-  S  C_  ( A  X.  B
)
87a1i 9 . 2  |-  ( ph  ->  S  C_  ( A  X.  B ) )
9 xp2nd 6224 . . . . . 6  |-  ( z  e.  ( A  X.  B )  ->  ( 2nd `  z )  e.  B )
109adantl 277 . . . . 5  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  ( 2nd `  z )  e.  B )
11 xp1st 6223 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( 1st `  z )  e.  A )
1211adantl 277 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  ( 1st `  z )  e.  A )
13 opabfi.dc . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  B DECID  ps )
1413adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  A. x  e.  A  A. y  e.  B DECID  ps )
15 nfcv 2339 . . . . . . . 8  |-  F/_ x B
16 nfsbc1v 3008 . . . . . . . . 9  |-  F/ x [. ( 1st `  z
)  /  x ]. ps
1716nfdc 1673 . . . . . . . 8  |-  F/ xDECID  [. ( 1st `  z )  /  x ]. ps
1815, 17nfralw 2534 . . . . . . 7  |-  F/ x A. y  e.  B DECID  [. ( 1st `  z )  /  x ]. ps
19 sbceq1a 2999 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  ( ps  <->  [. ( 1st `  z
)  /  x ]. ps ) )
2019dcbid 839 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  (DECID  ps  <-> DECID  [. ( 1st `  z
)  /  x ]. ps ) )
2120ralbidv 2497 . . . . . . 7  |-  ( x  =  ( 1st `  z
)  ->  ( A. y  e.  B DECID  ps  <->  A. y  e.  B DECID  [. ( 1st `  z
)  /  x ]. ps ) )
2218, 21rspc 2862 . . . . . 6  |-  ( ( 1st `  z )  e.  A  ->  ( A. x  e.  A  A. y  e.  B DECID  ps  ->  A. y  e.  B DECID  [. ( 1st `  z )  /  x ]. ps ) )
2312, 14, 22sylc 62 . . . . 5  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  A. y  e.  B DECID  [. ( 1st `  z
)  /  x ]. ps )
24 nfsbc1v 3008 . . . . . . 7  |-  F/ y
[. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps
2524nfdc 1673 . . . . . 6  |-  F/ yDECID  [. ( 2nd `  z )  /  y ]. [. ( 1st `  z )  /  x ]. ps
26 sbceq1a 2999 . . . . . . 7  |-  ( y  =  ( 2nd `  z
)  ->  ( [. ( 1st `  z )  /  x ]. ps  <->  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
2726dcbid 839 . . . . . 6  |-  ( y  =  ( 2nd `  z
)  ->  (DECID  [. ( 1st `  z )  /  x ]. ps  <-> DECID  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
2825, 27rspc 2862 . . . . 5  |-  ( ( 2nd `  z )  e.  B  ->  ( A. y  e.  B DECID  [. ( 1st `  z )  /  x ]. ps  -> DECID  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
2910, 23, 28sylc 62 . . . 4  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  -> DECID  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps )
30 nfv 1542 . . . . . . . . . 10  |-  F/ x
( ( 1st `  z
)  e.  A  /\  y  e.  B )
3130, 16nfan 1579 . . . . . . . . 9  |-  F/ x
( ( ( 1st `  z )  e.  A  /\  y  e.  B
)  /\  [. ( 1st `  z )  /  x ]. ps )
32 nfv 1542 . . . . . . . . . 10  |-  F/ y ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B )
3332, 24nfan 1579 . . . . . . . . 9  |-  F/ y ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z
)  e.  B )  /\  [. ( 2nd `  z )  /  y ]. [. ( 1st `  z
)  /  x ]. ps )
34 eleq1 2259 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  z
)  ->  ( x  e.  A  <->  ( 1st `  z
)  e.  A ) )
3534anbi1d 465 . . . . . . . . . 10  |-  ( x  =  ( 1st `  z
)  ->  ( (
x  e.  A  /\  y  e.  B )  <->  ( ( 1st `  z
)  e.  A  /\  y  e.  B )
) )
3635, 19anbi12d 473 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  ( (
( x  e.  A  /\  y  e.  B
)  /\  ps )  <->  ( ( ( 1st `  z
)  e.  A  /\  y  e.  B )  /\  [. ( 1st `  z
)  /  x ]. ps ) ) )
37 eleq1 2259 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  z
)  ->  ( y  e.  B  <->  ( 2nd `  z
)  e.  B ) )
3837anbi2d 464 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( 1st `  z
)  e.  A  /\  y  e.  B )  <->  ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B ) ) )
3938, 26anbi12d 473 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( ( 1st `  z
)  e.  A  /\  y  e.  B )  /\  [. ( 1st `  z
)  /  x ]. ps )  <->  ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  /\  [. ( 2nd `  z )  / 
y ]. [. ( 1st `  z )  /  x ]. ps ) ) )
4031, 33, 36, 39opelopabgf 4304 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B )  -> 
( <. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  <->  ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  /\  [. ( 2nd `  z )  / 
y ]. [. ( 1st `  z )  /  x ]. ps ) ) )
4111, 9, 40syl2anc 411 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( <. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  <->  ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  /\  [. ( 2nd `  z )  / 
y ]. [. ( 1st `  z )  /  x ]. ps ) ) )
42 1st2nd2 6233 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
435a1i 9 . . . . . . . 8  |-  ( z  e.  ( A  X.  B )  ->  S  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) } )
4442, 43eleq12d 2267 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  (
z  e.  S  <->  <. ( 1st `  z ) ,  ( 2nd `  z )
>.  e.  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) } ) )
45 ibar 301 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B )  -> 
( [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps 
<->  ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z
)  e.  B )  /\  [. ( 2nd `  z )  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) ) )
4611, 9, 45syl2anc 411 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  ->  ( [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps 
<->  ( ( ( 1st `  z )  e.  A  /\  ( 2nd `  z
)  e.  B )  /\  [. ( 2nd `  z )  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) ) )
4741, 44, 463bitr4d 220 . . . . . 6  |-  ( z  e.  ( A  X.  B )  ->  (
z  e.  S  <->  [. ( 2nd `  z )  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
4847dcbid 839 . . . . 5  |-  ( z  e.  ( A  X.  B )  ->  (DECID  z  e.  S  <-> DECID  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
4948adantl 277 . . . 4  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  (DECID  z  e.  S  <-> DECID  [. ( 2nd `  z
)  /  y ]. [. ( 1st `  z
)  /  x ]. ps ) )
5029, 49mpbird 167 . . 3  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  -> DECID  z  e.  S
)
5150ralrimiva 2570 . 2  |-  ( ph  ->  A. z  e.  ( A  X.  B )DECID  z  e.  S )
52 ssfidc 6998 . 2  |-  ( ( ( A  X.  B
)  e.  Fin  /\  S  C_  ( A  X.  B )  /\  A. z  e.  ( A  X.  B )DECID  z  e.  S )  ->  S  e.  Fin )
534, 8, 51, 52syl3anc 1249 1  |-  ( ph  ->  S  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   [.wsbc 2989    C_ wss 3157   <.cop 3625   {copab 4093    X. cxp 4661   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  lgsquadlemsfi  15316  lgsquadlem3  15320
  Copyright terms: Public domain W3C validator