ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brres Unicode version

Theorem brres 4953
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
Hypothesis
Ref Expression
opelres.1  |-  B  e. 
_V
Assertion
Ref Expression
brres  |-  ( A ( C  |`  D ) B  <->  ( A C B  /\  A  e.  D ) )

Proof of Theorem brres
StepHypRef Expression
1 opelres.1 . . 3  |-  B  e. 
_V
21opelres 4952 . 2  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
3 df-br 4035 . 2  |-  ( A ( C  |`  D ) B  <->  <. A ,  B >.  e.  ( C  |`  D ) )
4 df-br 4035 . . 3  |-  ( A C B  <->  <. A ,  B >.  e.  C )
54anbi1i 458 . 2  |-  ( ( A C B  /\  A  e.  D )  <->  (
<. A ,  B >.  e.  C  /\  A  e.  D ) )
62, 3, 53bitr4i 212 1  |-  ( A ( C  |`  D ) B  <->  ( A C B  /\  A  e.  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2167   _Vcvv 2763   <.cop 3626   class class class wbr 4034    |` cres 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-res 4676
This theorem is referenced by:  dfres2  4999  dfima2  5012  poirr2  5063  cores  5174  resco  5175  rnco  5177  fnres  5377  fvres  5585  nfunsn  5596  1stconst  6288  2ndconst  6289
  Copyright terms: Public domain W3C validator