ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelresi Unicode version

Theorem opelresi 5016
Description:  <. A ,  A >. belongs to a restriction of the identity class iff  A belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
opelresi  |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <-> 
A  e.  B ) )

Proof of Theorem opelresi
StepHypRef Expression
1 opelresg 5012 . 2  |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <-> 
( <. A ,  A >.  e.  _I  /\  A  e.  B ) ) )
2 ididg 4875 . . . 4  |-  ( A  e.  V  ->  A  _I  A )
3 df-br 4084 . . . 4  |-  ( A  _I  A  <->  <. A ,  A >.  e.  _I  )
42, 3sylib 122 . . 3  |-  ( A  e.  V  ->  <. A ,  A >.  e.  _I  )
54biantrurd 305 . 2  |-  ( A  e.  V  ->  ( A  e.  B  <->  ( <. A ,  A >.  e.  _I  /\  A  e.  B
) ) )
61, 5bitr4d 191 1  |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <-> 
A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   <.cop 3669   class class class wbr 4083    _I cid 4379    |` cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-res 4731
This theorem is referenced by:  issref  5111
  Copyright terms: Public domain W3C validator