ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelresi Unicode version

Theorem opelresi 4798
Description:  <. A ,  A >. belongs to a restriction of the identity class iff  A belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
opelresi  |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <-> 
A  e.  B ) )

Proof of Theorem opelresi
StepHypRef Expression
1 opelresg 4794 . 2  |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <-> 
( <. A ,  A >.  e.  _I  /\  A  e.  B ) ) )
2 ididg 4660 . . . 4  |-  ( A  e.  V  ->  A  _I  A )
3 df-br 3898 . . . 4  |-  ( A  _I  A  <->  <. A ,  A >.  e.  _I  )
42, 3sylib 121 . . 3  |-  ( A  e.  V  ->  <. A ,  A >.  e.  _I  )
54biantrurd 301 . 2  |-  ( A  e.  V  ->  ( A  e.  B  <->  ( <. A ,  A >.  e.  _I  /\  A  e.  B
) ) )
61, 5bitr4d 190 1  |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <-> 
A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1463   <.cop 3498   class class class wbr 3897    _I cid 4178    |` cres 4509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-res 4519
This theorem is referenced by:  issref  4889
  Copyright terms: Public domain W3C validator