ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelresg GIF version

Theorem opelresg 4966
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
opelresg (𝐵𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷)))

Proof of Theorem opelresg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeq2 3820 . . 3 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
21eleq1d 2274 . 2 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ (𝐶𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷)))
31eleq1d 2274 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
43anbi1d 465 . 2 (𝑦 = 𝐵 → ((⟨𝐴, 𝑦⟩ ∈ 𝐶𝐴𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷)))
5 vex 2775 . . 3 𝑦 ∈ V
65opelres 4964 . 2 (⟨𝐴, 𝑦⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝑦⟩ ∈ 𝐶𝐴𝐷))
72, 4, 6vtoclbg 2834 1 (𝐵𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  cop 3636  cres 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-xp 4681  df-res 4687
This theorem is referenced by:  brresg  4967  opelresi  4970  issref  5065
  Copyright terms: Public domain W3C validator