ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelresg GIF version

Theorem opelresg 4953
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
opelresg (𝐵𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷)))

Proof of Theorem opelresg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeq2 3809 . . 3 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
21eleq1d 2265 . 2 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ (𝐶𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷)))
31eleq1d 2265 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
43anbi1d 465 . 2 (𝑦 = 𝐵 → ((⟨𝐴, 𝑦⟩ ∈ 𝐶𝐴𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷)))
5 vex 2766 . . 3 𝑦 ∈ V
65opelres 4951 . 2 (⟨𝐴, 𝑦⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝑦⟩ ∈ 𝐶𝐴𝐷))
72, 4, 6vtoclbg 2825 1 (𝐵𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cop 3625  cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-res 4675
This theorem is referenced by:  brresg  4954  opelresi  4957  issref  5052
  Copyright terms: Public domain W3C validator