![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelresg | GIF version |
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
opelresg | ⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 3805 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
2 | 1 | eleq1d 2262 | . 2 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷))) |
3 | 1 | eleq1d 2262 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
4 | 3 | anbi1d 465 | . 2 ⊢ (𝑦 = 𝐵 → ((〈𝐴, 𝑦〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
5 | vex 2763 | . . 3 ⊢ 𝑦 ∈ V | |
6 | 5 | opelres 4947 | . 2 ⊢ (〈𝐴, 𝑦〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝑦〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
7 | 2, 4, 6 | vtoclbg 2821 | 1 ⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 〈cop 3621 ↾ cres 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-xp 4665 df-res 4671 |
This theorem is referenced by: brresg 4950 opelresi 4953 issref 5048 |
Copyright terms: Public domain | W3C validator |