| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelresg | GIF version | ||
| Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| opelresg | ⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 3834 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 2 | 1 | eleq1d 2276 | . 2 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷))) |
| 3 | 1 | eleq1d 2276 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
| 4 | 3 | anbi1d 465 | . 2 ⊢ (𝑦 = 𝐵 → ((〈𝐴, 𝑦〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
| 5 | vex 2779 | . . 3 ⊢ 𝑦 ∈ V | |
| 6 | 5 | opelres 4983 | . 2 ⊢ (〈𝐴, 𝑦〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝑦〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| 7 | 2, 4, 6 | vtoclbg 2839 | 1 ⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 〈cop 3646 ↾ cres 4695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-xp 4699 df-res 4705 |
| This theorem is referenced by: brresg 4986 opelresi 4989 issref 5084 |
| Copyright terms: Public domain | W3C validator |