| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelresg | GIF version | ||
| Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| opelresg | ⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 3858 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 2 | 1 | eleq1d 2298 | . 2 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷))) |
| 3 | 1 | eleq1d 2298 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
| 4 | 3 | anbi1d 465 | . 2 ⊢ (𝑦 = 𝐵 → ((〈𝐴, 𝑦〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
| 5 | vex 2802 | . . 3 ⊢ 𝑦 ∈ V | |
| 6 | 5 | opelres 5010 | . 2 ⊢ (〈𝐴, 𝑦〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝑦〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| 7 | 2, 4, 6 | vtoclbg 2862 | 1 ⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 〈cop 3669 ↾ cres 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-xp 4725 df-res 4731 |
| This theorem is referenced by: brresg 5013 opelresi 5016 issref 5111 |
| Copyright terms: Public domain | W3C validator |