ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucss Unicode version

Theorem ordsucss 4595
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )

Proof of Theorem ordsucss
StepHypRef Expression
1 ordtr 4468 . 2  |-  ( Ord 
B  ->  Tr  B
)
2 trss 4190 . . . . 5  |-  ( Tr  B  ->  ( A  e.  B  ->  A  C_  B ) )
3 snssi 3811 . . . . . 6  |-  ( A  e.  B  ->  { A }  C_  B )
43a1i 9 . . . . 5  |-  ( Tr  B  ->  ( A  e.  B  ->  { A }  C_  B ) )
52, 4jcad 307 . . . 4  |-  ( Tr  B  ->  ( A  e.  B  ->  ( A 
C_  B  /\  { A }  C_  B ) ) )
6 unss 3378 . . . 4  |-  ( ( A  C_  B  /\  { A }  C_  B
)  <->  ( A  u.  { A } )  C_  B )
75, 6imbitrdi 161 . . 3  |-  ( Tr  B  ->  ( A  e.  B  ->  ( A  u.  { A }
)  C_  B )
)
8 df-suc 4461 . . . 4  |-  suc  A  =  ( A  u.  { A } )
98sseq1i 3250 . . 3  |-  ( suc 
A  C_  B  <->  ( A  u.  { A } ) 
C_  B )
107, 9imbitrrdi 162 . 2  |-  ( Tr  B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
111, 10syl 14 1  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200    u. cun 3195    C_ wss 3197   {csn 3666   Tr wtr 4181   Ord word 4452   suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-uni 3888  df-tr 4182  df-iord 4456  df-suc 4461
This theorem is referenced by:  ordelsuc  4596  tfrlemibfn  6472  tfr1onlembfn  6488  tfrcllembfn  6501  sucinc2  6590  nndomo  7021  prarloclemn  7682  ennnfonelemhom  12981  ennnfonelemrn  12985
  Copyright terms: Public domain W3C validator