ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucss Unicode version

Theorem ordsucss 4570
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )

Proof of Theorem ordsucss
StepHypRef Expression
1 ordtr 4443 . 2  |-  ( Ord 
B  ->  Tr  B
)
2 trss 4167 . . . . 5  |-  ( Tr  B  ->  ( A  e.  B  ->  A  C_  B ) )
3 snssi 3788 . . . . . 6  |-  ( A  e.  B  ->  { A }  C_  B )
43a1i 9 . . . . 5  |-  ( Tr  B  ->  ( A  e.  B  ->  { A }  C_  B ) )
52, 4jcad 307 . . . 4  |-  ( Tr  B  ->  ( A  e.  B  ->  ( A 
C_  B  /\  { A }  C_  B ) ) )
6 unss 3355 . . . 4  |-  ( ( A  C_  B  /\  { A }  C_  B
)  <->  ( A  u.  { A } )  C_  B )
75, 6imbitrdi 161 . . 3  |-  ( Tr  B  ->  ( A  e.  B  ->  ( A  u.  { A }
)  C_  B )
)
8 df-suc 4436 . . . 4  |-  suc  A  =  ( A  u.  { A } )
98sseq1i 3227 . . 3  |-  ( suc 
A  C_  B  <->  ( A  u.  { A } ) 
C_  B )
107, 9imbitrrdi 162 . 2  |-  ( Tr  B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
111, 10syl 14 1  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178    u. cun 3172    C_ wss 3174   {csn 3643   Tr wtr 4158   Ord word 4427   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-uni 3865  df-tr 4159  df-iord 4431  df-suc 4436
This theorem is referenced by:  ordelsuc  4571  tfrlemibfn  6437  tfr1onlembfn  6453  tfrcllembfn  6466  sucinc2  6555  nndomo  6986  prarloclemn  7647  ennnfonelemhom  12901  ennnfonelemrn  12905
  Copyright terms: Public domain W3C validator