ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucss Unicode version

Theorem ordsucss 4540
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )

Proof of Theorem ordsucss
StepHypRef Expression
1 ordtr 4413 . 2  |-  ( Ord 
B  ->  Tr  B
)
2 trss 4140 . . . . 5  |-  ( Tr  B  ->  ( A  e.  B  ->  A  C_  B ) )
3 snssi 3766 . . . . . 6  |-  ( A  e.  B  ->  { A }  C_  B )
43a1i 9 . . . . 5  |-  ( Tr  B  ->  ( A  e.  B  ->  { A }  C_  B ) )
52, 4jcad 307 . . . 4  |-  ( Tr  B  ->  ( A  e.  B  ->  ( A 
C_  B  /\  { A }  C_  B ) ) )
6 unss 3337 . . . 4  |-  ( ( A  C_  B  /\  { A }  C_  B
)  <->  ( A  u.  { A } )  C_  B )
75, 6imbitrdi 161 . . 3  |-  ( Tr  B  ->  ( A  e.  B  ->  ( A  u.  { A }
)  C_  B )
)
8 df-suc 4406 . . . 4  |-  suc  A  =  ( A  u.  { A } )
98sseq1i 3209 . . 3  |-  ( suc 
A  C_  B  <->  ( A  u.  { A } ) 
C_  B )
107, 9imbitrrdi 162 . 2  |-  ( Tr  B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
111, 10syl 14 1  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167    u. cun 3155    C_ wss 3157   {csn 3622   Tr wtr 4131   Ord word 4397   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-uni 3840  df-tr 4132  df-iord 4401  df-suc 4406
This theorem is referenced by:  ordelsuc  4541  tfrlemibfn  6386  tfr1onlembfn  6402  tfrcllembfn  6415  sucinc2  6504  nndomo  6925  prarloclemn  7566  ennnfonelemhom  12632  ennnfonelemrn  12636
  Copyright terms: Public domain W3C validator