Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordsucss | Unicode version |
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.) |
Ref | Expression |
---|---|
ordsucss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4372 | . 2 | |
2 | trss 4105 | . . . . 5 | |
3 | snssi 3733 | . . . . . 6 | |
4 | 3 | a1i 9 | . . . . 5 |
5 | 2, 4 | jcad 307 | . . . 4 |
6 | unss 3307 | . . . 4 | |
7 | 5, 6 | syl6ib 161 | . . 3 |
8 | df-suc 4365 | . . . 4 | |
9 | 8 | sseq1i 3179 | . . 3 |
10 | 7, 9 | syl6ibr 162 | . 2 |
11 | 1, 10 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wcel 2146 cun 3125 wss 3127 csn 3589 wtr 4096 word 4356 csuc 4359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-uni 3806 df-tr 4097 df-iord 4360 df-suc 4365 |
This theorem is referenced by: ordelsuc 4498 tfrlemibfn 6319 tfr1onlembfn 6335 tfrcllembfn 6348 sucinc2 6437 nndomo 6854 prarloclemn 7473 ennnfonelemhom 12383 ennnfonelemrn 12387 |
Copyright terms: Public domain | W3C validator |