ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucss Unicode version

Theorem ordsucss 4497
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )

Proof of Theorem ordsucss
StepHypRef Expression
1 ordtr 4372 . 2  |-  ( Ord 
B  ->  Tr  B
)
2 trss 4105 . . . . 5  |-  ( Tr  B  ->  ( A  e.  B  ->  A  C_  B ) )
3 snssi 3733 . . . . . 6  |-  ( A  e.  B  ->  { A }  C_  B )
43a1i 9 . . . . 5  |-  ( Tr  B  ->  ( A  e.  B  ->  { A }  C_  B ) )
52, 4jcad 307 . . . 4  |-  ( Tr  B  ->  ( A  e.  B  ->  ( A 
C_  B  /\  { A }  C_  B ) ) )
6 unss 3307 . . . 4  |-  ( ( A  C_  B  /\  { A }  C_  B
)  <->  ( A  u.  { A } )  C_  B )
75, 6syl6ib 161 . . 3  |-  ( Tr  B  ->  ( A  e.  B  ->  ( A  u.  { A }
)  C_  B )
)
8 df-suc 4365 . . . 4  |-  suc  A  =  ( A  u.  { A } )
98sseq1i 3179 . . 3  |-  ( suc 
A  C_  B  <->  ( A  u.  { A } ) 
C_  B )
107, 9syl6ibr 162 . 2  |-  ( Tr  B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
111, 10syl 14 1  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2146    u. cun 3125    C_ wss 3127   {csn 3589   Tr wtr 4096   Ord word 4356   suc csuc 4359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-uni 3806  df-tr 4097  df-iord 4360  df-suc 4365
This theorem is referenced by:  ordelsuc  4498  tfrlemibfn  6319  tfr1onlembfn  6335  tfrcllembfn  6348  sucinc2  6437  nndomo  6854  prarloclemn  7473  ennnfonelemhom  12383  ennnfonelemrn  12387
  Copyright terms: Public domain W3C validator