ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pion Unicode version

Theorem pion 7372
Description: A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.)
Assertion
Ref Expression
pion  |-  ( A  e.  N.  ->  A  e.  On )

Proof of Theorem pion
StepHypRef Expression
1 pinn 7371 . 2  |-  ( A  e.  N.  ->  A  e.  om )
2 nnon 4643 . 2  |-  ( A  e.  om  ->  A  e.  On )
31, 2syl 14 1  |-  ( A  e.  N.  ->  A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   Oncon0 4395   omcom 4623   N.cnpi 7334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-tr 4129  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-ni 7366
This theorem is referenced by:  ltsopi  7382  indpi  7404
  Copyright terms: Public domain W3C validator