ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pion GIF version

Theorem pion 7436
Description: A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.)
Assertion
Ref Expression
pion (𝐴N𝐴 ∈ On)

Proof of Theorem pion
StepHypRef Expression
1 pinn 7435 . 2 (𝐴N𝐴 ∈ ω)
2 nnon 4663 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2syl 14 1 (𝐴N𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  Oncon0 4415  ωcom 4643  Ncnpi 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-uni 3854  df-int 3889  df-tr 4148  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-ni 7430
This theorem is referenced by:  ltsopi  7446  indpi  7468
  Copyright terms: Public domain W3C validator