ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pion GIF version

Theorem pion 7485
Description: A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.)
Assertion
Ref Expression
pion (𝐴N𝐴 ∈ On)

Proof of Theorem pion
StepHypRef Expression
1 pinn 7484 . 2 (𝐴N𝐴 ∈ ω)
2 nnon 4699 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2syl 14 1 (𝐴N𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Oncon0 4451  ωcom 4679  Ncnpi 7447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-tr 4182  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-ni 7479
This theorem is referenced by:  ltsopi  7495  indpi  7517
  Copyright terms: Public domain W3C validator