![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > piord | GIF version |
Description: A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.) |
Ref | Expression |
---|---|
piord | ⊢ (𝐴 ∈ N → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7322 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | nnord 4623 | . 2 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ N → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2158 Ord word 4374 ωcom 4601 Ncnpi 7285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-uni 3822 df-int 3857 df-tr 4114 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-ni 7317 |
This theorem is referenced by: prarloclemn 7512 |
Copyright terms: Public domain | W3C validator |