| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > piord | GIF version | ||
| Description: A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.) |
| Ref | Expression |
|---|---|
| piord | ⊢ (𝐴 ∈ N → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7496 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | nnord 4704 | . 2 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ N → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Ord word 4453 ωcom 4682 Ncnpi 7459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-ni 7491 |
| This theorem is referenced by: prarloclemn 7686 |
| Copyright terms: Public domain | W3C validator |