Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prarloclemn | Unicode version |
Description: Subtracting two from a positive integer. Lemma for prarloc 7438. (Contributed by Jim Kingdon, 5-Nov-2019.) |
Ref | Expression |
---|---|
prarloclemn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 | |
2 | 1pi 7250 | . . . . 5 | |
3 | ltpiord 7254 | . . . . 5 | |
4 | 2, 3 | mpan 421 | . . . 4 |
5 | 4 | biimpa 294 | . . 3 |
6 | piord 7246 | . . . 4 | |
7 | ordsucss 4478 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | 1, 5, 8 | sylc 62 | . 2 |
10 | df-2o 6379 | . . . 4 | |
11 | 10 | sseq1i 3166 | . . 3 |
12 | pinn 7244 | . . . . 5 | |
13 | 2onn 6483 | . . . . . 6 | |
14 | nnawordex 6490 | . . . . . 6 | |
15 | 13, 14 | mpan 421 | . . . . 5 |
16 | 12, 15 | syl 14 | . . . 4 |
17 | 16 | adantr 274 | . . 3 |
18 | 11, 17 | bitr3id 193 | . 2 |
19 | 9, 18 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1342 wcel 2135 wrex 2443 wss 3114 class class class wbr 3979 word 4337 csuc 4340 com 4564 (class class class)co 5839 c1o 6371 c2o 6372 coa 6375 cnpi 7207 clti 7210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4094 ax-sep 4097 ax-nul 4105 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 ax-iinf 4562 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2726 df-sbc 2950 df-csb 3044 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-int 3822 df-iun 3865 df-br 3980 df-opab 4041 df-mpt 4042 df-tr 4078 df-eprel 4264 df-id 4268 df-iord 4341 df-on 4343 df-suc 4346 df-iom 4565 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 df-fv 5193 df-ov 5842 df-oprab 5843 df-mpo 5844 df-1st 6103 df-2nd 6104 df-recs 6267 df-irdg 6332 df-1o 6378 df-2o 6379 df-oadd 6382 df-ni 7239 df-lti 7242 |
This theorem is referenced by: prarloclem5 7435 |
Copyright terms: Public domain | W3C validator |