ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemn Unicode version

Theorem prarloclemn 7528
Description: Subtracting two from a positive integer. Lemma for prarloc 7532. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
prarloclemn  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x
)  =  N )
Distinct variable group:    x, N

Proof of Theorem prarloclemn
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  N  e.  N. )
2 1pi 7344 . . . . 5  |-  1o  e.  N.
3 ltpiord 7348 . . . . 5  |-  ( ( 1o  e.  N.  /\  N  e.  N. )  ->  ( 1o  <N  N  <->  1o  e.  N ) )
42, 3mpan 424 . . . 4  |-  ( N  e.  N.  ->  ( 1o  <N  N  <->  1o  e.  N ) )
54biimpa 296 . . 3  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  1o  e.  N )
6 piord 7340 . . . 4  |-  ( N  e.  N.  ->  Ord  N )
7 ordsucss 4521 . . . 4  |-  ( Ord 
N  ->  ( 1o  e.  N  ->  suc  1o  C_  N ) )
86, 7syl 14 . . 3  |-  ( N  e.  N.  ->  ( 1o  e.  N  ->  suc  1o  C_  N ) )
91, 5, 8sylc 62 . 2  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  suc  1o  C_  N )
10 df-2o 6442 . . . 4  |-  2o  =  suc  1o
1110sseq1i 3196 . . 3  |-  ( 2o  C_  N  <->  suc  1o  C_  N
)
12 pinn 7338 . . . . 5  |-  ( N  e.  N.  ->  N  e.  om )
13 2onn 6546 . . . . . 6  |-  2o  e.  om
14 nnawordex 6554 . . . . . 6  |-  ( ( 2o  e.  om  /\  N  e.  om )  ->  ( 2o  C_  N  <->  E. x  e.  om  ( 2o  +o  x )  =  N ) )
1513, 14mpan 424 . . . . 5  |-  ( N  e.  om  ->  ( 2o  C_  N  <->  E. x  e.  om  ( 2o  +o  x )  =  N ) )
1612, 15syl 14 . . . 4  |-  ( N  e.  N.  ->  ( 2o  C_  N  <->  E. x  e.  om  ( 2o  +o  x )  =  N ) )
1716adantr 276 . . 3  |-  ( ( N  e.  N.  /\  1o  <N  N )  -> 
( 2o  C_  N  <->  E. x  e.  om  ( 2o  +o  x )  =  N ) )
1811, 17bitr3id 194 . 2  |-  ( ( N  e.  N.  /\  1o  <N  N )  -> 
( suc  1o  C_  N  <->  E. x  e.  om  ( 2o  +o  x )  =  N ) )
199, 18mpbid 147 1  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x
)  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   E.wrex 2469    C_ wss 3144   class class class wbr 4018   Ord word 4380   suc csuc 4383   omcom 4607  (class class class)co 5896   1oc1o 6434   2oc2o 6435    +o coa 6438   N.cnpi 7301    <N clti 7304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-1o 6441  df-2o 6442  df-oadd 6445  df-ni 7333  df-lti 7336
This theorem is referenced by:  prarloclem5  7529
  Copyright terms: Public domain W3C validator