ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txswaphmeo Unicode version

Theorem txswaphmeo 12961
Description: There is a homeomorphism from  X  X.  Y to  Y  X.  X. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeo  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K )
Homeo ( K  tX  J
) ) )
Distinct variable groups:    x, y, J   
x, K, y    x, X, y    x, Y, y

Proof of Theorem txswaphmeo
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  J  e.  (TopOn `  X ) )
2 simpr 109 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  K  e.  (TopOn `  Y ) )
31, 2cnmpt2nd 12929 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J  tX  K )  Cn  K
) )
41, 2cnmpt1st 12928 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K )  Cn  J
) )
51, 2, 3, 4cnmpt2t 12933 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K )  Cn  ( K  tX  J ) ) )
6 opelxpi 4636 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
76ancoms 266 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
87adantl 275 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  <. y ,  x >.  e.  ( Y  X.  X
) )
98ralrimivva 2548 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  A. x  e.  X  A. y  e.  Y  <. y ,  x >.  e.  ( Y  X.  X ) )
10 eqid 2165 . . . . . . 7  |-  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  =  ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )
1110fmpo 6169 . . . . . 6  |-  ( A. x  e.  X  A. y  e.  Y  <. y ,  x >.  e.  ( Y  X.  X )  <-> 
( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X ) )
129, 11sylib 121 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X ) )
13 opelxpi 4636 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
1413ancoms 266 . . . . . . . 8  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
1514adantl 275 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( y  e.  Y  /\  x  e.  X ) )  ->  <. x ,  y >.  e.  ( X  X.  Y
) )
1615ralrimivva 2548 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  A. y  e.  Y  A. x  e.  X  <. x ,  y >.  e.  ( X  X.  Y ) )
17 eqid 2165 . . . . . . 7  |-  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )
1817fmpo 6169 . . . . . 6  |-  ( A. y  e.  Y  A. x  e.  X  <. x ,  y >.  e.  ( X  X.  Y )  <-> 
( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
) : ( Y  X.  X ) --> ( X  X.  Y ) )
1916, 18sylib 121 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) : ( Y  X.  X ) --> ( X  X.  Y ) )
20 txswaphmeolem 12960 . . . . . 6  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  o.  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )  =  (  _I  |`  ( Y  X.  X ) )
21 txswaphmeolem 12960 . . . . . 6  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
22 fcof1o 5757 . . . . . 6  |-  ( ( ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X )  /\  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) : ( Y  X.  X ) --> ( X  X.  Y ) )  /\  ( ( ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. )  o.  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )  =  (  _I  |`  ( Y  X.  X ) )  /\  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  o.  (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y
) ) ) )  ->  ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
) ) )
2320, 21, 22mpanr12 436 . . . . 5  |-  ( ( ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X )  /\  ( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
) : ( Y  X.  X ) --> ( X  X.  Y ) )  ->  ( (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X
)  /\  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) ) )
2412, 19, 23syl2anc 409 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X
)  /\  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) ) )
2524simprd 113 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )
262, 1cnmpt2nd 12929 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  x )  e.  ( ( K  tX  J )  Cn  J
) )
272, 1cnmpt1st 12928 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  y )  e.  ( ( K  tX  J )  Cn  K
) )
282, 1, 26, 27cnmpt2t 12933 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  e.  (
( K  tX  J
)  Cn  ( J 
tX  K ) ) )
2925, 28eqeltrd 2243 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  e.  ( ( K 
tX  J )  Cn  ( J  tX  K
) ) )
30 ishmeo 12944 . 2  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  e.  ( ( J 
tX  K ) Homeo ( K  tX  J ) )  <->  ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K
)  Cn  ( K 
tX  J ) )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( K  tX  J
)  Cn  ( J 
tX  K ) ) ) )
315, 29, 30sylanbrc 414 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K )
Homeo ( K  tX  J
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   <.cop 3579    _I cid 4266    X. cxp 4602   `'ccnv 4603    |` cres 4606    o. ccom 4608   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842    e. cmpo 5844  TopOnctopon 12648    Cn ccn 12825    tX ctx 12892   Homeochmeo 12940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-topgen 12577  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-tx 12893  df-hmeo 12941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator