ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txswaphmeo Unicode version

Theorem txswaphmeo 14557
Description: There is a homeomorphism from  X  X.  Y to  Y  X.  X. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeo  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K )
Homeo ( K  tX  J
) ) )
Distinct variable groups:    x, y, J   
x, K, y    x, X, y    x, Y, y

Proof of Theorem txswaphmeo
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  J  e.  (TopOn `  X ) )
2 simpr 110 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  K  e.  (TopOn `  Y ) )
31, 2cnmpt2nd 14525 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J  tX  K )  Cn  K
) )
41, 2cnmpt1st 14524 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K )  Cn  J
) )
51, 2, 3, 4cnmpt2t 14529 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K )  Cn  ( K  tX  J ) ) )
6 opelxpi 4695 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
76ancoms 268 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
87adantl 277 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  <. y ,  x >.  e.  ( Y  X.  X
) )
98ralrimivva 2579 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  A. x  e.  X  A. y  e.  Y  <. y ,  x >.  e.  ( Y  X.  X ) )
10 eqid 2196 . . . . . . 7  |-  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  =  ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )
1110fmpo 6259 . . . . . 6  |-  ( A. x  e.  X  A. y  e.  Y  <. y ,  x >.  e.  ( Y  X.  X )  <-> 
( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X ) )
129, 11sylib 122 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X ) )
13 opelxpi 4695 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
1413ancoms 268 . . . . . . . 8  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
1514adantl 277 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( y  e.  Y  /\  x  e.  X ) )  ->  <. x ,  y >.  e.  ( X  X.  Y
) )
1615ralrimivva 2579 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  A. y  e.  Y  A. x  e.  X  <. x ,  y >.  e.  ( X  X.  Y ) )
17 eqid 2196 . . . . . . 7  |-  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )
1817fmpo 6259 . . . . . 6  |-  ( A. y  e.  Y  A. x  e.  X  <. x ,  y >.  e.  ( X  X.  Y )  <-> 
( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
) : ( Y  X.  X ) --> ( X  X.  Y ) )
1916, 18sylib 122 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) : ( Y  X.  X ) --> ( X  X.  Y ) )
20 txswaphmeolem 14556 . . . . . 6  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  o.  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )  =  (  _I  |`  ( Y  X.  X ) )
21 txswaphmeolem 14556 . . . . . 6  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
22 fcof1o 5836 . . . . . 6  |-  ( ( ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X )  /\  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) : ( Y  X.  X ) --> ( X  X.  Y ) )  /\  ( ( ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. )  o.  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )  =  (  _I  |`  ( Y  X.  X ) )  /\  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  o.  (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y
) ) ) )  ->  ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
) ) )
2320, 21, 22mpanr12 439 . . . . 5  |-  ( ( ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X )  /\  ( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
) : ( Y  X.  X ) --> ( X  X.  Y ) )  ->  ( (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X
)  /\  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) ) )
2412, 19, 23syl2anc 411 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X
)  /\  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) ) )
2524simprd 114 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )
262, 1cnmpt2nd 14525 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  x )  e.  ( ( K  tX  J )  Cn  J
) )
272, 1cnmpt1st 14524 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  y )  e.  ( ( K  tX  J )  Cn  K
) )
282, 1, 26, 27cnmpt2t 14529 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  e.  (
( K  tX  J
)  Cn  ( J 
tX  K ) ) )
2925, 28eqeltrd 2273 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  e.  ( ( K 
tX  J )  Cn  ( J  tX  K
) ) )
30 ishmeo 14540 . 2  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  e.  ( ( J 
tX  K ) Homeo ( K  tX  J ) )  <->  ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K
)  Cn  ( K 
tX  J ) )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( K  tX  J
)  Cn  ( J 
tX  K ) ) ) )
315, 29, 30sylanbrc 417 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K )
Homeo ( K  tX  J
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   <.cop 3625    _I cid 4323    X. cxp 4661   `'ccnv 4662    |` cres 4665    o. ccom 4667   -->wf 5254   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922    e. cmpo 5924  TopOnctopon 14246    Cn ccn 14421    tX ctx 14488   Homeochmeo 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424  df-tx 14489  df-hmeo 14537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator