Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txswaphmeo | Unicode version |
Description: There is a homeomorphism from to . (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
txswaphmeo | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 TopOn TopOn TopOn | |
2 | simpr 109 | . . 3 TopOn TopOn TopOn | |
3 | 1, 2 | cnmpt2nd 12628 | . . 3 TopOn TopOn |
4 | 1, 2 | cnmpt1st 12627 | . . 3 TopOn TopOn |
5 | 1, 2, 3, 4 | cnmpt2t 12632 | . 2 TopOn TopOn |
6 | opelxpi 4611 | . . . . . . . . 9 | |
7 | 6 | ancoms 266 | . . . . . . . 8 |
8 | 7 | adantl 275 | . . . . . . 7 TopOn TopOn |
9 | 8 | ralrimivva 2536 | . . . . . 6 TopOn TopOn |
10 | eqid 2154 | . . . . . . 7 | |
11 | 10 | fmpo 6139 | . . . . . 6 |
12 | 9, 11 | sylib 121 | . . . . 5 TopOn TopOn |
13 | opelxpi 4611 | . . . . . . . . 9 | |
14 | 13 | ancoms 266 | . . . . . . . 8 |
15 | 14 | adantl 275 | . . . . . . 7 TopOn TopOn |
16 | 15 | ralrimivva 2536 | . . . . . 6 TopOn TopOn |
17 | eqid 2154 | . . . . . . 7 | |
18 | 17 | fmpo 6139 | . . . . . 6 |
19 | 16, 18 | sylib 121 | . . . . 5 TopOn TopOn |
20 | txswaphmeolem 12659 | . . . . . 6 | |
21 | txswaphmeolem 12659 | . . . . . 6 | |
22 | fcof1o 5730 | . . . . . 6 | |
23 | 20, 21, 22 | mpanr12 436 | . . . . 5 |
24 | 12, 19, 23 | syl2anc 409 | . . . 4 TopOn TopOn |
25 | 24 | simprd 113 | . . 3 TopOn TopOn |
26 | 2, 1 | cnmpt2nd 12628 | . . . 4 TopOn TopOn |
27 | 2, 1 | cnmpt1st 12627 | . . . 4 TopOn TopOn |
28 | 2, 1, 26, 27 | cnmpt2t 12632 | . . 3 TopOn TopOn |
29 | 25, 28 | eqeltrd 2231 | . 2 TopOn TopOn |
30 | ishmeo 12643 | . 2 | |
31 | 5, 29, 30 | sylanbrc 414 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 wral 2432 cop 3559 cid 4243 cxp 4577 ccnv 4578 cres 4581 ccom 4583 wf 5159 wf1o 5162 cfv 5163 (class class class)co 5814 cmpo 5816 TopOnctopon 12347 ccn 12524 ctx 12591 chmeo 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-map 6584 df-topgen 12311 df-top 12335 df-topon 12348 df-bases 12380 df-cn 12527 df-tx 12592 df-hmeo 12640 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |