ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blfps Unicode version

Theorem blfps 13049
Description: Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blfps  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D ) : ( X  X.  RR* ) --> ~P X )

Proof of Theorem blfps
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3227 . . . . . 6  |-  { y  e.  X  |  ( x D y )  <  r }  C_  X
2 psmetrel 12962 . . . . . . . 8  |-  Rel PsMet
3 relelfvdm 5518 . . . . . . . 8  |-  ( ( Rel PsMet  /\  D  e.  (PsMet `  X ) )  ->  X  e.  dom PsMet )
42, 3mpan 421 . . . . . . 7  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  dom PsMet )
5 elpw2g 4135 . . . . . . 7  |-  ( X  e.  dom PsMet  ->  ( { y  e.  X  | 
( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  |  (
x D y )  <  r }  C_  X ) )
64, 5syl 14 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  ( {
y  e.  X  | 
( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  |  (
x D y )  <  r }  C_  X ) )
71, 6mpbiri 167 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  { y  e.  X  |  (
x D y )  <  r }  e.  ~P X )
87a1d 22 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  ( (
x  e.  X  /\  r  e.  RR* )  ->  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X
) )
98ralrimivv 2547 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
10 eqid 2165 . . . 4  |-  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  =  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )
1110fmpo 6169 . . 3  |-  ( A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
129, 11sylib 121 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
13 blfvalps 13025 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D )  =  ( x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
1413feq1d 5324 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( ( ball `  D ) : ( X  X.  RR* )
--> ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X ) )
1512, 14mpbird 166 1  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D ) : ( X  X.  RR* ) --> ~P X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   A.wral 2444   {crab 2448    C_ wss 3116   ~Pcpw 3559   class class class wbr 3982    X. cxp 4602   dom cdm 4604   Rel wrel 4609   -->wf 5184   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   RR*cxr 7932    < clt 7933  PsMetcpsmet 12619   ballcbl 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-psmet 12627  df-bl 12630
This theorem is referenced by:  blrnps  13051  blelrnps  13059  unirnblps  13062
  Copyright terms: Public domain W3C validator