ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blvalps Unicode version

Theorem blvalps 15056
Description: The ball around a point  P is the set of all points whose distance from  P is less than the ball's radius  R. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blvalps  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  =  { x  e.  X  |  ( P D x )  <  R } )
Distinct variable groups:    x, P    x, D    x, R    x, X

Proof of Theorem blvalps
Dummy variables  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfvalps 15053 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D )  =  ( y  e.  X , 
r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
213ad2ant1 1042 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( ball `  D )  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
3 simprl 529 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  y  =  P )
43oveq1d 6015 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  ( y D x )  =  ( P D x ) )
5 simprr 531 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  r  =  R )
64, 5breq12d 4095 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  ( (
y D x )  <  r  <->  ( P D x )  < 
R ) )
76rabbidv 2788 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  { x  e.  X  |  (
y D x )  <  r }  =  { x  e.  X  |  ( P D x )  <  R } )
8 simp2 1022 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  P  e.  X )
9 simp3 1023 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  R  e.  RR* )
10 psmetrel 14990 . . . . 5  |-  Rel PsMet
11 relelfvdm 5658 . . . . 5  |-  ( ( Rel PsMet  /\  D  e.  (PsMet `  X ) )  ->  X  e.  dom PsMet )
1210, 11mpan 424 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  dom PsMet )
13123ad2ant1 1042 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  X  e.  dom PsMet )
14 rabexg 4226 . . 3  |-  ( X  e.  dom PsMet  ->  { x  e.  X  |  ( P D x )  < 
R }  e.  _V )
1513, 14syl 14 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  { x  e.  X  |  ( P D x )  < 
R }  e.  _V )
162, 7, 8, 9, 15ovmpod 6131 1  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  =  { x  e.  X  |  ( P D x )  <  R } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   class class class wbr 4082   dom cdm 4718   Rel wrel 4723   ` cfv 5317  (class class class)co 6000    e. cmpo 6002   RR*cxr 8176    < clt 8177  PsMetcpsmet 14493   ballcbl 14496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-psmet 14501  df-bl 14504
This theorem is referenced by:  elblps  15058
  Copyright terms: Public domain W3C validator