ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blvalps Unicode version

Theorem blvalps 14860
Description: The ball around a point  P is the set of all points whose distance from  P is less than the ball's radius  R. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blvalps  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  =  { x  e.  X  |  ( P D x )  <  R } )
Distinct variable groups:    x, P    x, D    x, R    x, X

Proof of Theorem blvalps
Dummy variables  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfvalps 14857 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D )  =  ( y  e.  X , 
r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
213ad2ant1 1021 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( ball `  D )  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
3 simprl 529 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  y  =  P )
43oveq1d 5959 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  ( y D x )  =  ( P D x ) )
5 simprr 531 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  r  =  R )
64, 5breq12d 4057 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  ( (
y D x )  <  r  <->  ( P D x )  < 
R ) )
76rabbidv 2761 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  { x  e.  X  |  (
y D x )  <  r }  =  { x  e.  X  |  ( P D x )  <  R } )
8 simp2 1001 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  P  e.  X )
9 simp3 1002 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  R  e.  RR* )
10 psmetrel 14794 . . . . 5  |-  Rel PsMet
11 relelfvdm 5608 . . . . 5  |-  ( ( Rel PsMet  /\  D  e.  (PsMet `  X ) )  ->  X  e.  dom PsMet )
1210, 11mpan 424 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  dom PsMet )
13123ad2ant1 1021 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  X  e.  dom PsMet )
14 rabexg 4187 . . 3  |-  ( X  e.  dom PsMet  ->  { x  e.  X  |  ( P D x )  < 
R }  e.  _V )
1513, 14syl 14 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  { x  e.  X  |  ( P D x )  < 
R }  e.  _V )
162, 7, 8, 9, 15ovmpod 6073 1  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  =  { x  e.  X  |  ( P D x )  <  R } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   {crab 2488   _Vcvv 2772   class class class wbr 4044   dom cdm 4675   Rel wrel 4680   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   RR*cxr 8106    < clt 8107  PsMetcpsmet 14297   ballcbl 14300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-xr 8111  df-psmet 14305  df-bl 14308
This theorem is referenced by:  elblps  14862
  Copyright terms: Public domain W3C validator