ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blvalps Unicode version

Theorem blvalps 13182
Description: The ball around a point  P is the set of all points whose distance from  P is less than the ball's radius  R. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blvalps  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  =  { x  e.  X  |  ( P D x )  <  R } )
Distinct variable groups:    x, P    x, D    x, R    x, X

Proof of Theorem blvalps
Dummy variables  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfvalps 13179 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D )  =  ( y  e.  X , 
r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
213ad2ant1 1013 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( ball `  D )  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
3 simprl 526 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  y  =  P )
43oveq1d 5868 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  ( y D x )  =  ( P D x ) )
5 simprr 527 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  r  =  R )
64, 5breq12d 4002 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  ( (
y D x )  <  r  <->  ( P D x )  < 
R ) )
76rabbidv 2719 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  (
y  =  P  /\  r  =  R )
)  ->  { x  e.  X  |  (
y D x )  <  r }  =  { x  e.  X  |  ( P D x )  <  R } )
8 simp2 993 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  P  e.  X )
9 simp3 994 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  R  e.  RR* )
10 psmetrel 13116 . . . . 5  |-  Rel PsMet
11 relelfvdm 5528 . . . . 5  |-  ( ( Rel PsMet  /\  D  e.  (PsMet `  X ) )  ->  X  e.  dom PsMet )
1210, 11mpan 422 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  dom PsMet )
13123ad2ant1 1013 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  X  e.  dom PsMet )
14 rabexg 4132 . . 3  |-  ( X  e.  dom PsMet  ->  { x  e.  X  |  ( P D x )  < 
R }  e.  _V )
1513, 14syl 14 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  { x  e.  X  |  ( P D x )  < 
R }  e.  _V )
162, 7, 8, 9, 15ovmpod 5980 1  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  =  { x  e.  X  |  ( P D x )  <  R } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   {crab 2452   _Vcvv 2730   class class class wbr 3989   dom cdm 4611   Rel wrel 4616   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   RR*cxr 7953    < clt 7954  PsMetcpsmet 12773   ballcbl 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-psmet 12781  df-bl 12784
This theorem is referenced by:  elblps  13184
  Copyright terms: Public domain W3C validator