ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrval Unicode version

Theorem ntrval 12061
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )

Proof of Theorem ntrval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21ntrfval 12051 . . . 4  |-  ( J  e.  Top  ->  ( int `  J )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) )
32fveq1d 5355 . . 3  |-  ( J  e.  Top  ->  (
( int `  J
) `  S )  =  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S ) )
43adantr 272 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S ) )
5 eqid 2100 . . 3  |-  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )
6 pweq 3460 . . . . 5  |-  ( x  =  S  ->  ~P x  =  ~P S
)
76ineq2d 3224 . . . 4  |-  ( x  =  S  ->  ( J  i^i  ~P x )  =  ( J  i^i  ~P S ) )
87unieqd 3694 . . 3  |-  ( x  =  S  ->  U. ( J  i^i  ~P x )  =  U. ( J  i^i  ~P S ) )
91topopn 11957 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
10 elpw2g 4021 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
119, 10syl 14 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
1211biimpar 293 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
13 inex1g 4004 . . . . 5  |-  ( J  e.  Top  ->  ( J  i^i  ~P S )  e.  _V )
1413adantr 272 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( J  i^i  ~P S )  e.  _V )
15 uniexg 4299 . . . 4  |-  ( ( J  i^i  ~P S
)  e.  _V  ->  U. ( J  i^i  ~P S )  e.  _V )
1614, 15syl 14 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  U. ( J  i^i  ~P S )  e.  _V )
175, 8, 12, 16fvmptd3 5446 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( x  e. 
~P X  |->  U. ( J  i^i  ~P x ) ) `  S )  =  U. ( J  i^i  ~P S ) )
184, 17eqtrd 2132 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448   _Vcvv 2641    i^i cin 3020    C_ wss 3021   ~Pcpw 3457   U.cuni 3683    |-> cmpt 3929   ` cfv 5059   Topctop 11946   intcnt 12044
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-top 11947  df-ntr 12047
This theorem is referenced by:  ntropn  12068  ntrss  12070  ntrss2  12072  ssntr  12073  isopn3  12076  ntreq0  12083
  Copyright terms: Public domain W3C validator