ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrval Unicode version

Theorem ntrval 14697
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )

Proof of Theorem ntrval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21ntrfval 14687 . . . 4  |-  ( J  e.  Top  ->  ( int `  J )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) )
32fveq1d 5601 . . 3  |-  ( J  e.  Top  ->  (
( int `  J
) `  S )  =  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S ) )
43adantr 276 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S ) )
5 eqid 2207 . . 3  |-  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )
6 pweq 3629 . . . . 5  |-  ( x  =  S  ->  ~P x  =  ~P S
)
76ineq2d 3382 . . . 4  |-  ( x  =  S  ->  ( J  i^i  ~P x )  =  ( J  i^i  ~P S ) )
87unieqd 3875 . . 3  |-  ( x  =  S  ->  U. ( J  i^i  ~P x )  =  U. ( J  i^i  ~P S ) )
91topopn 14595 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
10 elpw2g 4216 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
119, 10syl 14 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
1211biimpar 297 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
13 inex1g 4196 . . . . 5  |-  ( J  e.  Top  ->  ( J  i^i  ~P S )  e.  _V )
1413adantr 276 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( J  i^i  ~P S )  e.  _V )
15 uniexg 4504 . . . 4  |-  ( ( J  i^i  ~P S
)  e.  _V  ->  U. ( J  i^i  ~P S )  e.  _V )
1614, 15syl 14 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  U. ( J  i^i  ~P S )  e.  _V )
175, 8, 12, 16fvmptd3 5696 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( x  e. 
~P X  |->  U. ( J  i^i  ~P x ) ) `  S )  =  U. ( J  i^i  ~P S ) )
184, 17eqtrd 2240 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173    C_ wss 3174   ~Pcpw 3626   U.cuni 3864    |-> cmpt 4121   ` cfv 5290   Topctop 14584   intcnt 14680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-top 14585  df-ntr 14683
This theorem is referenced by:  ntropn  14704  ntrss  14706  ntrss2  14708  ssntr  14709  isopn3  14712  ntreq0  14719
  Copyright terms: Public domain W3C validator