ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrval Unicode version

Theorem ntrval 12316
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )

Proof of Theorem ntrval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21ntrfval 12306 . . . 4  |-  ( J  e.  Top  ->  ( int `  J )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) )
32fveq1d 5430 . . 3  |-  ( J  e.  Top  ->  (
( int `  J
) `  S )  =  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S ) )
43adantr 274 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  ( ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) `  S ) )
5 eqid 2140 . . 3  |-  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) )
6 pweq 3517 . . . . 5  |-  ( x  =  S  ->  ~P x  =  ~P S
)
76ineq2d 3281 . . . 4  |-  ( x  =  S  ->  ( J  i^i  ~P x )  =  ( J  i^i  ~P S ) )
87unieqd 3754 . . 3  |-  ( x  =  S  ->  U. ( J  i^i  ~P x )  =  U. ( J  i^i  ~P S ) )
91topopn 12212 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
10 elpw2g 4088 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
119, 10syl 14 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
1211biimpar 295 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
13 inex1g 4071 . . . . 5  |-  ( J  e.  Top  ->  ( J  i^i  ~P S )  e.  _V )
1413adantr 274 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( J  i^i  ~P S )  e.  _V )
15 uniexg 4368 . . . 4  |-  ( ( J  i^i  ~P S
)  e.  _V  ->  U. ( J  i^i  ~P S )  e.  _V )
1614, 15syl 14 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  U. ( J  i^i  ~P S )  e.  _V )
175, 8, 12, 16fvmptd3 5521 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( x  e. 
~P X  |->  U. ( J  i^i  ~P x ) ) `  S )  =  U. ( J  i^i  ~P S ) )
184, 17eqtrd 2173 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   _Vcvv 2689    i^i cin 3074    C_ wss 3075   ~Pcpw 3514   U.cuni 3743    |-> cmpt 3996   ` cfv 5130   Topctop 12201   intcnt 12299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-top 12202  df-ntr 12302
This theorem is referenced by:  ntropn  12323  ntrss  12325  ntrss2  12327  ssntr  12328  isopn3  12331  ntreq0  12338
  Copyright terms: Public domain W3C validator