Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgpr | Unicode version |
Description: A Cauchy sequence of
positive fractions with a modulus of convergence
converges to a positive real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies) (one key difference
being that this is for
positive reals rather than signed reals). Also, the HoTT book theorem
has a modulus of convergence (that is, a rate of convergence)
specified by (11.2.9) in HoTT whereas this theorem fixes the rate of
convergence to say that all terms after the nth term must be within
of the nth term (it should later be able
to prove versions
of this theorem with a different fixed rate or a modulus of
convergence supplied as a hypothesis). We also specify that every
term needs to be larger than a fraction , to avoid the case
where we have positive terms which "converge" to zero (which
is not a
positive real).
This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7603 and caucvgprpr 7653. Reading cauappcvgpr 7603 first (the simplest of the three) might help understanding the other two. (Contributed by Jim Kingdon, 18-Jun-2020.) |
Ref | Expression |
---|---|
caucvgpr.f | |
caucvgpr.cau | |
caucvgpr.bnd |
Ref | Expression |
---|---|
caucvgpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgpr.f | . . 3 | |
2 | caucvgpr.cau | . . 3 | |
3 | caucvgpr.bnd | . . 3 | |
4 | opeq1 3758 | . . . . . . . . . . 11 | |
5 | 4 | eceq1d 6537 | . . . . . . . . . 10 |
6 | 5 | fveq2d 5490 | . . . . . . . . 9 |
7 | 6 | oveq2d 5858 | . . . . . . . 8 |
8 | fveq2 5486 | . . . . . . . 8 | |
9 | 7, 8 | breq12d 3995 | . . . . . . 7 |
10 | 9 | cbvrexv 2693 | . . . . . 6 |
11 | 10 | a1i 9 | . . . . 5 |
12 | 11 | rabbiia 2711 | . . . 4 |
13 | 8, 6 | oveq12d 5860 | . . . . . . . 8 |
14 | 13 | breq1d 3992 | . . . . . . 7 |
15 | 14 | cbvrexv 2693 | . . . . . 6 |
16 | 15 | a1i 9 | . . . . 5 |
17 | 16 | rabbiia 2711 | . . . 4 |
18 | 12, 17 | opeq12i 3763 | . . 3 |
19 | 1, 2, 3, 18 | caucvgprlemcl 7617 | . 2 |
20 | 1, 2, 3, 18 | caucvgprlemlim 7622 | . 2 |
21 | oveq1 5849 | . . . . . . . 8 | |
22 | 21 | breq2d 3994 | . . . . . . 7 |
23 | breq1 3985 | . . . . . . 7 | |
24 | 22, 23 | anbi12d 465 | . . . . . 6 |
25 | 24 | imbi2d 229 | . . . . 5 |
26 | 25 | rexralbidv 2492 | . . . 4 |
27 | 26 | ralbidv 2466 | . . 3 |
28 | 27 | rspcev 2830 | . 2 |
29 | 19, 20, 28 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 crab 2448 cop 3579 class class class wbr 3982 wf 5184 cfv 5188 (class class class)co 5842 c1o 6377 cec 6499 cnpi 7213 clti 7216 ceq 7220 cnq 7221 cplq 7223 crq 7225 cltq 7226 cnp 7232 cpp 7234 cltp 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-iplp 7409 df-iltp 7411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |