ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgpr Unicode version

Theorem caucvgpr 7615
Description: A Cauchy sequence of positive fractions with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a fraction  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7595 and caucvgprpr 7645. Reading cauappcvgpr 7595 first (the simplest of the three) might help understanding the other two.

(Contributed by Jim Kingdon, 18-Jun-2020.)

Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
Assertion
Ref Expression
caucvgpr  |-  ( ph  ->  E. y  e.  P.  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Distinct variable groups:    A, j    j, F, k, n, l, u, x, y    ph, j,
k, x
Allowed substitution hints:    ph( y, u, n, l)    A( x, y, u, k, n, l)

Proof of Theorem caucvgpr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . 3  |-  ( ph  ->  F : N. --> Q. )
2 caucvgpr.cau . . 3  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
3 caucvgpr.bnd . . 3  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
4 opeq1 3753 . . . . . . . . . . 11  |-  ( z  =  j  ->  <. z ,  1o >.  =  <. j ,  1o >. )
54eceq1d 6529 . . . . . . . . . 10  |-  ( z  =  j  ->  [ <. z ,  1o >. ]  ~Q  =  [ <. j ,  1o >. ]  ~Q  )
65fveq2d 5485 . . . . . . . . 9  |-  ( z  =  j  ->  ( *Q `  [ <. z ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )
76oveq2d 5853 . . . . . . . 8  |-  ( z  =  j  ->  (
l  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
8 fveq2 5481 . . . . . . . 8  |-  ( z  =  j  ->  ( F `  z )  =  ( F `  j ) )
97, 8breq12d 3990 . . . . . . 7  |-  ( z  =  j  ->  (
( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z )  <->  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
109cbvrexv 2691 . . . . . 6  |-  ( E. z  e.  N.  (
l  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z )  <->  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
1110a1i 9 . . . . 5  |-  ( l  e.  Q.  ->  ( E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z )  <->  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
1211rabbiia 2707 . . . 4  |-  { l  e.  Q.  |  E. z  e.  N.  (
l  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) }  =  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
138, 6oveq12d 5855 . . . . . . . 8  |-  ( z  =  j  ->  (
( F `  z
)  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  =  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
1413breq1d 3987 . . . . . . 7  |-  ( z  =  j  ->  (
( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u ) )
1514cbvrexv 2691 . . . . . 6  |-  ( E. z  e.  N.  (
( F `  z
)  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u )
1615a1i 9 . . . . 5  |-  ( u  e.  Q.  ->  ( E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u ) )
1716rabbiia 2707 . . . 4  |-  { u  e.  Q.  |  E. z  e.  N.  ( ( F `
 z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
1812, 17opeq12i 3758 . . 3  |-  <. { l  e.  Q.  |  E. z  e.  N.  (
l  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
191, 2, 3, 18caucvgprlemcl 7609 . 2  |-  ( ph  -> 
<. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  e. 
P. )
201, 2, 3, 18caucvgprlemlim 7614 . 2  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) )
21 oveq1 5844 . . . . . . . 8  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  =  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. ) )
2221breq2d 3989 . . . . . . 7  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  (
y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  <->  <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. ) ) )
23 breq1 3980 . . . . . . 7  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. 
<-> 
<. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) )
2422, 23anbi12d 465 . . . . . 6  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( y  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  y  <P 
<. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. )  <->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) )
2524imbi2d 229 . . . . 5  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) )  <->  ( j  <N  k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) ) )
2625rexralbidv 2490 . . . 4  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  (
y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  /\  y  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) )  <->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) ) )
2726ralbidv 2464 . . 3  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( A. x  e. 
Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) )  <->  A. x  e.  Q.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) ) )
2827rspcev 2826 . 2  |-  ( (
<. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  e. 
P.  /\  A. x  e.  Q.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) )  ->  E. y  e.  P.  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
2919, 20, 28syl2anc 409 1  |-  ( ph  ->  E. y  e.  P.  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   {cab 2150   A.wral 2442   E.wrex 2443   {crab 2446   <.cop 3574   class class class wbr 3977   -->wf 5179   ` cfv 5183  (class class class)co 5837   1oc1o 6369   [cec 6491   N.cnpi 7205    <N clti 7208    ~Q ceq 7212   Q.cnq 7213    +Q cplq 7215   *Qcrq 7217    <Q cltq 7218   P.cnp 7224    +P. cpp 7226    <P cltp 7228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-eprel 4262  df-id 4266  df-po 4269  df-iso 4270  df-iord 4339  df-on 4341  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-recs 6265  df-irdg 6330  df-1o 6376  df-2o 6377  df-oadd 6380  df-omul 6381  df-er 6493  df-ec 6495  df-qs 6499  df-ni 7237  df-pli 7238  df-mi 7239  df-lti 7240  df-plpq 7277  df-mpq 7278  df-enq 7280  df-nqqs 7281  df-plqqs 7282  df-mqqs 7283  df-1nqqs 7284  df-rq 7285  df-ltnqqs 7286  df-enq0 7357  df-nq0 7358  df-0nq0 7359  df-plq0 7360  df-mq0 7361  df-inp 7399  df-iplp 7401  df-iltp 7403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator