ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgpr Unicode version

Theorem caucvgpr 7797
Description: A Cauchy sequence of positive fractions with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a fraction  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7777 and caucvgprpr 7827. Reading cauappcvgpr 7777 first (the simplest of the three) might help understanding the other two.

(Contributed by Jim Kingdon, 18-Jun-2020.)

Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
Assertion
Ref Expression
caucvgpr  |-  ( ph  ->  E. y  e.  P.  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Distinct variable groups:    A, j    j, F, k, n, l, u, x, y    ph, j,
k, x
Allowed substitution hints:    ph( y, u, n, l)    A( x, y, u, k, n, l)

Proof of Theorem caucvgpr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . 3  |-  ( ph  ->  F : N. --> Q. )
2 caucvgpr.cau . . 3  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
3 caucvgpr.bnd . . 3  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
4 opeq1 3819 . . . . . . . . . . 11  |-  ( z  =  j  ->  <. z ,  1o >.  =  <. j ,  1o >. )
54eceq1d 6658 . . . . . . . . . 10  |-  ( z  =  j  ->  [ <. z ,  1o >. ]  ~Q  =  [ <. j ,  1o >. ]  ~Q  )
65fveq2d 5582 . . . . . . . . 9  |-  ( z  =  j  ->  ( *Q `  [ <. z ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )
76oveq2d 5962 . . . . . . . 8  |-  ( z  =  j  ->  (
l  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
8 fveq2 5578 . . . . . . . 8  |-  ( z  =  j  ->  ( F `  z )  =  ( F `  j ) )
97, 8breq12d 4058 . . . . . . 7  |-  ( z  =  j  ->  (
( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z )  <->  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
109cbvrexv 2739 . . . . . 6  |-  ( E. z  e.  N.  (
l  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z )  <->  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
1110a1i 9 . . . . 5  |-  ( l  e.  Q.  ->  ( E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z )  <->  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
1211rabbiia 2757 . . . 4  |-  { l  e.  Q.  |  E. z  e.  N.  (
l  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) }  =  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
138, 6oveq12d 5964 . . . . . . . 8  |-  ( z  =  j  ->  (
( F `  z
)  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  =  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
1413breq1d 4055 . . . . . . 7  |-  ( z  =  j  ->  (
( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u ) )
1514cbvrexv 2739 . . . . . 6  |-  ( E. z  e.  N.  (
( F `  z
)  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u )
1615a1i 9 . . . . 5  |-  ( u  e.  Q.  ->  ( E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u ) )
1716rabbiia 2757 . . . 4  |-  { u  e.  Q.  |  E. z  e.  N.  ( ( F `
 z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
1812, 17opeq12i 3824 . . 3  |-  <. { l  e.  Q.  |  E. z  e.  N.  (
l  +Q  ( *Q
`  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
191, 2, 3, 18caucvgprlemcl 7791 . 2  |-  ( ph  -> 
<. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  e. 
P. )
201, 2, 3, 18caucvgprlemlim 7796 . 2  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) )
21 oveq1 5953 . . . . . . . 8  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  =  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. ) )
2221breq2d 4057 . . . . . . 7  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  (
y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  <->  <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. ) ) )
23 breq1 4048 . . . . . . 7  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. 
<-> 
<. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) )
2422, 23anbi12d 473 . . . . . 6  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( y  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  y  <P 
<. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. )  <->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) )
2524imbi2d 230 . . . . 5  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) )  <->  ( j  <N  k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) ) )
2625rexralbidv 2532 . . . 4  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  (
y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  /\  y  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) )  <->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) ) )
2726ralbidv 2506 . . 3  |-  ( y  =  <. { l  e. 
Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  ) )  <Q 
( F `  z
) } ,  {
u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  -> 
( A. x  e. 
Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) )  <->  A. x  e.  Q.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) ) )
2827rspcev 2877 . 2  |-  ( (
<. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  e. 
P.  /\  A. x  e.  Q.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. )  /\  <. { l  e.  Q.  |  E. z  e.  N.  ( l  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  ( F `  z ) } ,  { u  e.  Q.  |  E. z  e.  N.  ( ( F `  z )  +Q  ( *Q `  [ <. z ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. ) ) )  ->  E. y  e.  P.  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
2919, 20, 28syl2anc 411 1  |-  ( ph  ->  E. y  e.  P.  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   {crab 2488   <.cop 3636   class class class wbr 4045   -->wf 5268   ` cfv 5272  (class class class)co 5946   1oc1o 6497   [cec 6620   N.cnpi 7387    <N clti 7390    ~Q ceq 7394   Q.cnq 7395    +Q cplq 7397   *Qcrq 7399    <Q cltq 7400   P.cnp 7406    +P. cpp 7408    <P cltp 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-1o 6504  df-2o 6505  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-mpq 7460  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-mqqs 7465  df-1nqqs 7466  df-rq 7467  df-ltnqqs 7468  df-enq0 7539  df-nq0 7540  df-0nq0 7541  df-plq0 7542  df-mq0 7543  df-inp 7581  df-iplp 7583  df-iltp 7585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator