Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgpr Unicode version

Theorem caucvgpr 7454
 Description: A Cauchy sequence of positive fractions with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a fraction , to avoid the case where we have positive terms which "converge" to zero (which is not a positive real). This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7434 and caucvgprpr 7484. Reading cauappcvgpr 7434 first (the simplest of the three) might help understanding the other two. (Contributed by Jim Kingdon, 18-Jun-2020.)
Hypotheses
Ref Expression
caucvgpr.f
caucvgpr.cau
caucvgpr.bnd
Assertion
Ref Expression
caucvgpr
Distinct variable groups:   ,   ,,,,,,,   ,,,
Allowed substitution hints:   (,,,)   (,,,,,)

Proof of Theorem caucvgpr
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . 3
2 caucvgpr.cau . . 3
3 caucvgpr.bnd . . 3
4 opeq1 3673 . . . . . . . . . . 11
54eceq1d 6431 . . . . . . . . . 10
65fveq2d 5391 . . . . . . . . 9
76oveq2d 5756 . . . . . . . 8
8 fveq2 5387 . . . . . . . 8
97, 8breq12d 3910 . . . . . . 7
109cbvrexv 2630 . . . . . 6
1110a1i 9 . . . . 5
1211rabbiia 2643 . . . 4
138, 6oveq12d 5758 . . . . . . . 8
1413breq1d 3907 . . . . . . 7
1514cbvrexv 2630 . . . . . 6
1615a1i 9 . . . . 5
1716rabbiia 2643 . . . 4
1812, 17opeq12i 3678 . . 3
191, 2, 3, 18caucvgprlemcl 7448 . 2
201, 2, 3, 18caucvgprlemlim 7453 . 2
21 oveq1 5747 . . . . . . . 8
2221breq2d 3909 . . . . . . 7
23 breq1 3900 . . . . . . 7
2422, 23anbi12d 462 . . . . . 6
2524imbi2d 229 . . . . 5
2625rexralbidv 2436 . . . 4
2726ralbidv 2412 . . 3
2827rspcev 2761 . 2
2919, 20, 28syl2anc 406 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1314   wcel 1463  cab 2101  wral 2391  wrex 2392  crab 2395  cop 3498   class class class wbr 3897  wf 5087  cfv 5091  (class class class)co 5740  c1o 6272  cec 6393  cnpi 7044   clti 7047   ceq 7051  cnq 7052   cplq 7054  crq 7056   cltq 7057  cnp 7063   cpp 7065   cltp 7067 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470 This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-eprel 4179  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-1o 6279  df-2o 6280  df-oadd 6283  df-omul 6284  df-er 6395  df-ec 6397  df-qs 6401  df-ni 7076  df-pli 7077  df-mi 7078  df-lti 7079  df-plpq 7116  df-mpq 7117  df-enq 7119  df-nqqs 7120  df-plqqs 7121  df-mqqs 7122  df-1nqqs 7123  df-rq 7124  df-ltnqqs 7125  df-enq0 7196  df-nq0 7197  df-0nq0 7198  df-plq0 7199  df-mq0 7200  df-inp 7238  df-iplp 7240  df-iltp 7242 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator