Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgpr | Unicode version |
Description: A Cauchy sequence of
positive fractions with a modulus of convergence
converges to a positive real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies) (one key difference
being that this is for
positive reals rather than signed reals). Also, the HoTT book theorem
has a modulus of convergence (that is, a rate of convergence)
specified by (11.2.9) in HoTT whereas this theorem fixes the rate of
convergence to say that all terms after the nth term must be within
of the nth term (it should later be able
to prove versions
of this theorem with a different fixed rate or a modulus of
convergence supplied as a hypothesis). We also specify that every
term needs to be larger than a fraction , to avoid the case
where we have positive terms which "converge" to zero (which
is not a
positive real).
This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7595 and caucvgprpr 7645. Reading cauappcvgpr 7595 first (the simplest of the three) might help understanding the other two. (Contributed by Jim Kingdon, 18-Jun-2020.) |
Ref | Expression |
---|---|
caucvgpr.f | |
caucvgpr.cau | |
caucvgpr.bnd |
Ref | Expression |
---|---|
caucvgpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgpr.f | . . 3 | |
2 | caucvgpr.cau | . . 3 | |
3 | caucvgpr.bnd | . . 3 | |
4 | opeq1 3753 | . . . . . . . . . . 11 | |
5 | 4 | eceq1d 6529 | . . . . . . . . . 10 |
6 | 5 | fveq2d 5485 | . . . . . . . . 9 |
7 | 6 | oveq2d 5853 | . . . . . . . 8 |
8 | fveq2 5481 | . . . . . . . 8 | |
9 | 7, 8 | breq12d 3990 | . . . . . . 7 |
10 | 9 | cbvrexv 2691 | . . . . . 6 |
11 | 10 | a1i 9 | . . . . 5 |
12 | 11 | rabbiia 2707 | . . . 4 |
13 | 8, 6 | oveq12d 5855 | . . . . . . . 8 |
14 | 13 | breq1d 3987 | . . . . . . 7 |
15 | 14 | cbvrexv 2691 | . . . . . 6 |
16 | 15 | a1i 9 | . . . . 5 |
17 | 16 | rabbiia 2707 | . . . 4 |
18 | 12, 17 | opeq12i 3758 | . . 3 |
19 | 1, 2, 3, 18 | caucvgprlemcl 7609 | . 2 |
20 | 1, 2, 3, 18 | caucvgprlemlim 7614 | . 2 |
21 | oveq1 5844 | . . . . . . . 8 | |
22 | 21 | breq2d 3989 | . . . . . . 7 |
23 | breq1 3980 | . . . . . . 7 | |
24 | 22, 23 | anbi12d 465 | . . . . . 6 |
25 | 24 | imbi2d 229 | . . . . 5 |
26 | 25 | rexralbidv 2490 | . . . 4 |
27 | 26 | ralbidv 2464 | . . 3 |
28 | 27 | rspcev 2826 | . 2 |
29 | 19, 20, 28 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1342 wcel 2135 cab 2150 wral 2442 wrex 2443 crab 2446 cop 3574 class class class wbr 3977 wf 5179 cfv 5183 (class class class)co 5837 c1o 6369 cec 6491 cnpi 7205 clti 7208 ceq 7212 cnq 7213 cplq 7215 crq 7217 cltq 7218 cnp 7224 cpp 7226 cltp 7228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-iinf 4560 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-eprel 4262 df-id 4266 df-po 4269 df-iso 4270 df-iord 4339 df-on 4341 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-ov 5840 df-oprab 5841 df-mpo 5842 df-1st 6101 df-2nd 6102 df-recs 6265 df-irdg 6330 df-1o 6376 df-2o 6377 df-oadd 6380 df-omul 6381 df-er 6493 df-ec 6495 df-qs 6499 df-ni 7237 df-pli 7238 df-mi 7239 df-lti 7240 df-plpq 7277 df-mpq 7278 df-enq 7280 df-nqqs 7281 df-plqqs 7282 df-mqqs 7283 df-1nqqs 7284 df-rq 7285 df-ltnqqs 7286 df-enq0 7357 df-nq0 7358 df-0nq0 7359 df-plq0 7360 df-mq0 7361 df-inp 7399 df-iplp 7401 df-iltp 7403 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |