ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcl Unicode version

Theorem caucvgprlemcl 7743
Description: Lemma for caucvgpr 7749. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemcl  |-  ( ph  ->  L  e.  P. )
Distinct variable groups:    A, j    j, F, l    u, F, j   
n, F, k    j,
k, L    k, n
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    L( u, n, l)

Proof of Theorem caucvgprlemcl
Dummy variables  s  a  c  d  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . . 4  |-  ( ph  ->  F : N. --> Q. )
2 caucvgpr.cau . . . 4  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
3 caucvgpr.bnd . . . . 5  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
4 fveq2 5558 . . . . . . 7  |-  ( j  =  a  ->  ( F `  j )  =  ( F `  a ) )
54breq2d 4045 . . . . . 6  |-  ( j  =  a  ->  ( A  <Q  ( F `  j )  <->  A  <Q  ( F `  a ) ) )
65cbvralv 2729 . . . . 5  |-  ( A. j  e.  N.  A  <Q  ( F `  j
)  <->  A. a  e.  N.  A  <Q  ( F `  a ) )
73, 6sylib 122 . . . 4  |-  ( ph  ->  A. a  e.  N.  A  <Q  ( F `  a ) )
8 caucvgpr.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
9 opeq1 3808 . . . . . . . . . . . . 13  |-  ( j  =  a  ->  <. j ,  1o >.  =  <. a ,  1o >. )
109eceq1d 6628 . . . . . . . . . . . 12  |-  ( j  =  a  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. a ,  1o >. ]  ~Q  )
1110fveq2d 5562 . . . . . . . . . . 11  |-  ( j  =  a  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )
1211oveq2d 5938 . . . . . . . . . 10  |-  ( j  =  a  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
1312, 4breq12d 4046 . . . . . . . . 9  |-  ( j  =  a  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) ) )
1413cbvrexv 2730 . . . . . . . 8  |-  ( E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) )
1514a1i 9 . . . . . . 7  |-  ( l  e.  Q.  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) ) )
1615rabbiia 2748 . . . . . 6  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  =  { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( F `  a ) }
174, 11oveq12d 5940 . . . . . . . . . 10  |-  ( j  =  a  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
1817breq1d 4043 . . . . . . . . 9  |-  ( j  =  a  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u ) )
1918cbvrexv 2730 . . . . . . . 8  |-  ( E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. a  e.  N.  ( ( F `
 a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u )
2019a1i 9 . . . . . . 7  |-  ( u  e.  Q.  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. a  e.  N.  ( ( F `
 a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u ) )
2120rabbiia 2748 . . . . . 6  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  e.  Q.  |  E. a  e.  N.  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u }
2216, 21opeq12i 3813 . . . . 5  |-  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( F `  a ) } ,  { u  e.  Q.  |  E. a  e.  N.  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >.
238, 22eqtri 2217 . . . 4  |-  L  = 
<. { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( F `  a ) } ,  { u  e.  Q.  |  E. a  e.  N.  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >.
241, 2, 7, 23caucvgprlemm 7735 . . 3  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
25 ssrab2 3268 . . . . . 6  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  C_  Q.
26 nqex 7430 . . . . . . 7  |-  Q.  e.  _V
2726elpw2 4190 . . . . . 6  |-  ( { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  ~P Q.  <->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  C_  Q. )
2825, 27mpbir 146 . . . . 5  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  ~P Q.
29 ssrab2 3268 . . . . . 6  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  C_  Q.
3026elpw2 4190 . . . . . 6  |-  ( { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }  e.  ~P Q.  <->  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }  C_  Q. )
3129, 30mpbir 146 . . . . 5  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  ~P Q.
32 opelxpi 4695 . . . . 5  |-  ( ( { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  ~P Q.  /\  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  ~P Q. )  ->  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. ) )
3328, 31, 32mp2an 426 . . . 4  |-  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. )
348, 33eqeltri 2269 . . 3  |-  L  e.  ( ~P Q.  X.  ~P Q. )
3524, 34jctil 312 . 2  |-  ( ph  ->  ( L  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. r  e.  Q.  r  e.  ( 2nd `  L
) ) ) )
361, 2, 7, 23caucvgprlemrnd 7740 . . 3  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
37 breq1 4036 . . . . . . 7  |-  ( n  =  c  ->  (
n  <N  k  <->  c  <N  k ) )
38 fveq2 5558 . . . . . . . . 9  |-  ( n  =  c  ->  ( F `  n )  =  ( F `  c ) )
39 opeq1 3808 . . . . . . . . . . . 12  |-  ( n  =  c  ->  <. n ,  1o >.  =  <. c ,  1o >. )
4039eceq1d 6628 . . . . . . . . . . 11  |-  ( n  =  c  ->  [ <. n ,  1o >. ]  ~Q  =  [ <. c ,  1o >. ]  ~Q  )
4140fveq2d 5562 . . . . . . . . . 10  |-  ( n  =  c  ->  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )
4241oveq2d 5938 . . . . . . . . 9  |-  ( n  =  c  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
4338, 42breq12d 4046 . . . . . . . 8  |-  ( n  =  c  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  c )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
4438, 41oveq12d 5940 . . . . . . . . 9  |-  ( n  =  c  ->  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  c )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
4544breq2d 4045 . . . . . . . 8  |-  ( n  =  c  ->  (
( F `  k
)  <Q  ( ( F `
 n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
4643, 45anbi12d 473 . . . . . . 7  |-  ( n  =  c  ->  (
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  c )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
4737, 46imbi12d 234 . . . . . 6  |-  ( n  =  c  ->  (
( n  <N  k  ->  ( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  <->  ( c  <N  k  ->  ( ( F `  c )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) ) )
48 breq2 4037 . . . . . . 7  |-  ( k  =  d  ->  (
c  <N  k  <->  c  <N  d ) )
49 fveq2 5558 . . . . . . . . . 10  |-  ( k  =  d  ->  ( F `  k )  =  ( F `  d ) )
5049oveq1d 5937 . . . . . . . . 9  |-  ( k  =  d  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  =  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
5150breq2d 4045 . . . . . . . 8  |-  ( k  =  d  ->  (
( F `  c
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <->  ( F `  c )  <Q  (
( F `  d
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
5249breq1d 4043 . . . . . . . 8  |-  ( k  =  d  ->  (
( F `  k
)  <Q  ( ( F `
 c )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <->  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
5351, 52anbi12d 473 . . . . . . 7  |-  ( k  =  d  ->  (
( ( F `  c )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  c )  <Q  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
5448, 53imbi12d 234 . . . . . 6  |-  ( k  =  d  ->  (
( c  <N  k  ->  ( ( F `  c )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )  <->  ( c  <N  d  ->  ( ( F `  c )  <Q  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) ) )
5547, 54cbvral2v 2742 . . . . 5  |-  ( A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  <->  A. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( F `  c )  <Q  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
562, 55sylib 122 . . . 4  |-  ( ph  ->  A. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( F `  c
)  <Q  ( ( F `
 d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  /\  ( F `  d ) 
<Q  ( ( F `  c )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
571, 56, 7, 23caucvgprlemdisj 7741 . . 3  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
581, 2, 7, 23caucvgprlemloc 7742 . . 3  |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
s  <Q  r  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) ) )
5936, 57, 583jca 1179 . 2  |-  ( ph  ->  ( ( A. s  e.  Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) )  /\  A. s  e.  Q.  -.  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  /\  A. s  e.  Q.  A. r  e.  Q.  ( s  <Q 
r  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) ) ) )
60 elnp1st2nd 7543 . 2  |-  ( L  e.  P.  <->  ( ( L  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )  /\  (
( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) )  /\  A. s  e.  Q.  -.  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  /\  A. s  e.  Q.  A. r  e.  Q.  ( s  <Q 
r  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) ) ) ) )
6135, 59, 60sylanbrc 417 1  |-  ( ph  ->  L  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479    C_ wss 3157   ~Pcpw 3605   <.cop 3625   class class class wbr 4033    X. cxp 4661   -->wf 5254   ` cfv 5258  (class class class)co 5922   1stc1st 6196   2ndc2nd 6197   1oc1o 6467   [cec 6590   N.cnpi 7339    <N clti 7342    ~Q ceq 7346   Q.cnq 7347    +Q cplq 7349   *Qcrq 7351    <Q cltq 7352   P.cnp 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533
This theorem is referenced by:  caucvgprlemladdfu  7744  caucvgprlemladdrl  7745  caucvgprlem1  7746  caucvgprlem2  7747  caucvgpr  7749
  Copyright terms: Public domain W3C validator