| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprlemcl | Unicode version | ||
| Description: Lemma for caucvgpr 7830. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| caucvgpr.f |
|
| caucvgpr.cau |
|
| caucvgpr.bnd |
|
| caucvgpr.lim |
|
| Ref | Expression |
|---|---|
| caucvgprlemcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgpr.f |
. . . 4
| |
| 2 | caucvgpr.cau |
. . . 4
| |
| 3 | caucvgpr.bnd |
. . . . 5
| |
| 4 | fveq2 5599 |
. . . . . . 7
| |
| 5 | 4 | breq2d 4071 |
. . . . . 6
|
| 6 | 5 | cbvralv 2742 |
. . . . 5
|
| 7 | 3, 6 | sylib 122 |
. . . 4
|
| 8 | caucvgpr.lim |
. . . . 5
| |
| 9 | opeq1 3833 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | eceq1d 6679 |
. . . . . . . . . . . 12
|
| 11 | 10 | fveq2d 5603 |
. . . . . . . . . . 11
|
| 12 | 11 | oveq2d 5983 |
. . . . . . . . . 10
|
| 13 | 12, 4 | breq12d 4072 |
. . . . . . . . 9
|
| 14 | 13 | cbvrexv 2743 |
. . . . . . . 8
|
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | 15 | rabbiia 2761 |
. . . . . 6
|
| 17 | 4, 11 | oveq12d 5985 |
. . . . . . . . . 10
|
| 18 | 17 | breq1d 4069 |
. . . . . . . . 9
|
| 19 | 18 | cbvrexv 2743 |
. . . . . . . 8
|
| 20 | 19 | a1i 9 |
. . . . . . 7
|
| 21 | 20 | rabbiia 2761 |
. . . . . 6
|
| 22 | 16, 21 | opeq12i 3838 |
. . . . 5
|
| 23 | 8, 22 | eqtri 2228 |
. . . 4
|
| 24 | 1, 2, 7, 23 | caucvgprlemm 7816 |
. . 3
|
| 25 | ssrab2 3286 |
. . . . . 6
| |
| 26 | nqex 7511 |
. . . . . . 7
| |
| 27 | 26 | elpw2 4217 |
. . . . . 6
|
| 28 | 25, 27 | mpbir 146 |
. . . . 5
|
| 29 | ssrab2 3286 |
. . . . . 6
| |
| 30 | 26 | elpw2 4217 |
. . . . . 6
|
| 31 | 29, 30 | mpbir 146 |
. . . . 5
|
| 32 | opelxpi 4725 |
. . . . 5
| |
| 33 | 28, 31, 32 | mp2an 426 |
. . . 4
|
| 34 | 8, 33 | eqeltri 2280 |
. . 3
|
| 35 | 24, 34 | jctil 312 |
. 2
|
| 36 | 1, 2, 7, 23 | caucvgprlemrnd 7821 |
. . 3
|
| 37 | breq1 4062 |
. . . . . . 7
| |
| 38 | fveq2 5599 |
. . . . . . . . 9
| |
| 39 | opeq1 3833 |
. . . . . . . . . . . 12
| |
| 40 | 39 | eceq1d 6679 |
. . . . . . . . . . 11
|
| 41 | 40 | fveq2d 5603 |
. . . . . . . . . 10
|
| 42 | 41 | oveq2d 5983 |
. . . . . . . . 9
|
| 43 | 38, 42 | breq12d 4072 |
. . . . . . . 8
|
| 44 | 38, 41 | oveq12d 5985 |
. . . . . . . . 9
|
| 45 | 44 | breq2d 4071 |
. . . . . . . 8
|
| 46 | 43, 45 | anbi12d 473 |
. . . . . . 7
|
| 47 | 37, 46 | imbi12d 234 |
. . . . . 6
|
| 48 | breq2 4063 |
. . . . . . 7
| |
| 49 | fveq2 5599 |
. . . . . . . . . 10
| |
| 50 | 49 | oveq1d 5982 |
. . . . . . . . 9
|
| 51 | 50 | breq2d 4071 |
. . . . . . . 8
|
| 52 | 49 | breq1d 4069 |
. . . . . . . 8
|
| 53 | 51, 52 | anbi12d 473 |
. . . . . . 7
|
| 54 | 48, 53 | imbi12d 234 |
. . . . . 6
|
| 55 | 47, 54 | cbvral2v 2755 |
. . . . 5
|
| 56 | 2, 55 | sylib 122 |
. . . 4
|
| 57 | 1, 56, 7, 23 | caucvgprlemdisj 7822 |
. . 3
|
| 58 | 1, 2, 7, 23 | caucvgprlemloc 7823 |
. . 3
|
| 59 | 36, 57, 58 | 3jca 1180 |
. 2
|
| 60 | elnp1st2nd 7624 |
. 2
| |
| 61 | 35, 59, 60 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-inp 7614 |
| This theorem is referenced by: caucvgprlemladdfu 7825 caucvgprlemladdrl 7826 caucvgprlem1 7827 caucvgprlem2 7828 caucvgpr 7830 |
| Copyright terms: Public domain | W3C validator |