| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprlemcl | Unicode version | ||
| Description: Lemma for caucvgpr 7794. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| caucvgpr.f |
|
| caucvgpr.cau |
|
| caucvgpr.bnd |
|
| caucvgpr.lim |
|
| Ref | Expression |
|---|---|
| caucvgprlemcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgpr.f |
. . . 4
| |
| 2 | caucvgpr.cau |
. . . 4
| |
| 3 | caucvgpr.bnd |
. . . . 5
| |
| 4 | fveq2 5575 |
. . . . . . 7
| |
| 5 | 4 | breq2d 4055 |
. . . . . 6
|
| 6 | 5 | cbvralv 2737 |
. . . . 5
|
| 7 | 3, 6 | sylib 122 |
. . . 4
|
| 8 | caucvgpr.lim |
. . . . 5
| |
| 9 | opeq1 3818 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | eceq1d 6655 |
. . . . . . . . . . . 12
|
| 11 | 10 | fveq2d 5579 |
. . . . . . . . . . 11
|
| 12 | 11 | oveq2d 5959 |
. . . . . . . . . 10
|
| 13 | 12, 4 | breq12d 4056 |
. . . . . . . . 9
|
| 14 | 13 | cbvrexv 2738 |
. . . . . . . 8
|
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | 15 | rabbiia 2756 |
. . . . . 6
|
| 17 | 4, 11 | oveq12d 5961 |
. . . . . . . . . 10
|
| 18 | 17 | breq1d 4053 |
. . . . . . . . 9
|
| 19 | 18 | cbvrexv 2738 |
. . . . . . . 8
|
| 20 | 19 | a1i 9 |
. . . . . . 7
|
| 21 | 20 | rabbiia 2756 |
. . . . . 6
|
| 22 | 16, 21 | opeq12i 3823 |
. . . . 5
|
| 23 | 8, 22 | eqtri 2225 |
. . . 4
|
| 24 | 1, 2, 7, 23 | caucvgprlemm 7780 |
. . 3
|
| 25 | ssrab2 3277 |
. . . . . 6
| |
| 26 | nqex 7475 |
. . . . . . 7
| |
| 27 | 26 | elpw2 4200 |
. . . . . 6
|
| 28 | 25, 27 | mpbir 146 |
. . . . 5
|
| 29 | ssrab2 3277 |
. . . . . 6
| |
| 30 | 26 | elpw2 4200 |
. . . . . 6
|
| 31 | 29, 30 | mpbir 146 |
. . . . 5
|
| 32 | opelxpi 4706 |
. . . . 5
| |
| 33 | 28, 31, 32 | mp2an 426 |
. . . 4
|
| 34 | 8, 33 | eqeltri 2277 |
. . 3
|
| 35 | 24, 34 | jctil 312 |
. 2
|
| 36 | 1, 2, 7, 23 | caucvgprlemrnd 7785 |
. . 3
|
| 37 | breq1 4046 |
. . . . . . 7
| |
| 38 | fveq2 5575 |
. . . . . . . . 9
| |
| 39 | opeq1 3818 |
. . . . . . . . . . . 12
| |
| 40 | 39 | eceq1d 6655 |
. . . . . . . . . . 11
|
| 41 | 40 | fveq2d 5579 |
. . . . . . . . . 10
|
| 42 | 41 | oveq2d 5959 |
. . . . . . . . 9
|
| 43 | 38, 42 | breq12d 4056 |
. . . . . . . 8
|
| 44 | 38, 41 | oveq12d 5961 |
. . . . . . . . 9
|
| 45 | 44 | breq2d 4055 |
. . . . . . . 8
|
| 46 | 43, 45 | anbi12d 473 |
. . . . . . 7
|
| 47 | 37, 46 | imbi12d 234 |
. . . . . 6
|
| 48 | breq2 4047 |
. . . . . . 7
| |
| 49 | fveq2 5575 |
. . . . . . . . . 10
| |
| 50 | 49 | oveq1d 5958 |
. . . . . . . . 9
|
| 51 | 50 | breq2d 4055 |
. . . . . . . 8
|
| 52 | 49 | breq1d 4053 |
. . . . . . . 8
|
| 53 | 51, 52 | anbi12d 473 |
. . . . . . 7
|
| 54 | 48, 53 | imbi12d 234 |
. . . . . 6
|
| 55 | 47, 54 | cbvral2v 2750 |
. . . . 5
|
| 56 | 2, 55 | sylib 122 |
. . . 4
|
| 57 | 1, 56, 7, 23 | caucvgprlemdisj 7786 |
. . 3
|
| 58 | 1, 2, 7, 23 | caucvgprlemloc 7787 |
. . 3
|
| 59 | 36, 57, 58 | 3jca 1179 |
. 2
|
| 60 | elnp1st2nd 7588 |
. 2
| |
| 61 | 35, 59, 60 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-inp 7578 |
| This theorem is referenced by: caucvgprlemladdfu 7789 caucvgprlemladdrl 7790 caucvgprlem1 7791 caucvgprlem2 7792 caucvgpr 7794 |
| Copyright terms: Public domain | W3C validator |