| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprlemcl | Unicode version | ||
| Description: Lemma for caucvgpr 7749. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| caucvgpr.f |
|
| caucvgpr.cau |
|
| caucvgpr.bnd |
|
| caucvgpr.lim |
|
| Ref | Expression |
|---|---|
| caucvgprlemcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgpr.f |
. . . 4
| |
| 2 | caucvgpr.cau |
. . . 4
| |
| 3 | caucvgpr.bnd |
. . . . 5
| |
| 4 | fveq2 5558 |
. . . . . . 7
| |
| 5 | 4 | breq2d 4045 |
. . . . . 6
|
| 6 | 5 | cbvralv 2729 |
. . . . 5
|
| 7 | 3, 6 | sylib 122 |
. . . 4
|
| 8 | caucvgpr.lim |
. . . . 5
| |
| 9 | opeq1 3808 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | eceq1d 6628 |
. . . . . . . . . . . 12
|
| 11 | 10 | fveq2d 5562 |
. . . . . . . . . . 11
|
| 12 | 11 | oveq2d 5938 |
. . . . . . . . . 10
|
| 13 | 12, 4 | breq12d 4046 |
. . . . . . . . 9
|
| 14 | 13 | cbvrexv 2730 |
. . . . . . . 8
|
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | 15 | rabbiia 2748 |
. . . . . 6
|
| 17 | 4, 11 | oveq12d 5940 |
. . . . . . . . . 10
|
| 18 | 17 | breq1d 4043 |
. . . . . . . . 9
|
| 19 | 18 | cbvrexv 2730 |
. . . . . . . 8
|
| 20 | 19 | a1i 9 |
. . . . . . 7
|
| 21 | 20 | rabbiia 2748 |
. . . . . 6
|
| 22 | 16, 21 | opeq12i 3813 |
. . . . 5
|
| 23 | 8, 22 | eqtri 2217 |
. . . 4
|
| 24 | 1, 2, 7, 23 | caucvgprlemm 7735 |
. . 3
|
| 25 | ssrab2 3268 |
. . . . . 6
| |
| 26 | nqex 7430 |
. . . . . . 7
| |
| 27 | 26 | elpw2 4190 |
. . . . . 6
|
| 28 | 25, 27 | mpbir 146 |
. . . . 5
|
| 29 | ssrab2 3268 |
. . . . . 6
| |
| 30 | 26 | elpw2 4190 |
. . . . . 6
|
| 31 | 29, 30 | mpbir 146 |
. . . . 5
|
| 32 | opelxpi 4695 |
. . . . 5
| |
| 33 | 28, 31, 32 | mp2an 426 |
. . . 4
|
| 34 | 8, 33 | eqeltri 2269 |
. . 3
|
| 35 | 24, 34 | jctil 312 |
. 2
|
| 36 | 1, 2, 7, 23 | caucvgprlemrnd 7740 |
. . 3
|
| 37 | breq1 4036 |
. . . . . . 7
| |
| 38 | fveq2 5558 |
. . . . . . . . 9
| |
| 39 | opeq1 3808 |
. . . . . . . . . . . 12
| |
| 40 | 39 | eceq1d 6628 |
. . . . . . . . . . 11
|
| 41 | 40 | fveq2d 5562 |
. . . . . . . . . 10
|
| 42 | 41 | oveq2d 5938 |
. . . . . . . . 9
|
| 43 | 38, 42 | breq12d 4046 |
. . . . . . . 8
|
| 44 | 38, 41 | oveq12d 5940 |
. . . . . . . . 9
|
| 45 | 44 | breq2d 4045 |
. . . . . . . 8
|
| 46 | 43, 45 | anbi12d 473 |
. . . . . . 7
|
| 47 | 37, 46 | imbi12d 234 |
. . . . . 6
|
| 48 | breq2 4037 |
. . . . . . 7
| |
| 49 | fveq2 5558 |
. . . . . . . . . 10
| |
| 50 | 49 | oveq1d 5937 |
. . . . . . . . 9
|
| 51 | 50 | breq2d 4045 |
. . . . . . . 8
|
| 52 | 49 | breq1d 4043 |
. . . . . . . 8
|
| 53 | 51, 52 | anbi12d 473 |
. . . . . . 7
|
| 54 | 48, 53 | imbi12d 234 |
. . . . . 6
|
| 55 | 47, 54 | cbvral2v 2742 |
. . . . 5
|
| 56 | 2, 55 | sylib 122 |
. . . 4
|
| 57 | 1, 56, 7, 23 | caucvgprlemdisj 7741 |
. . 3
|
| 58 | 1, 2, 7, 23 | caucvgprlemloc 7742 |
. . 3
|
| 59 | 36, 57, 58 | 3jca 1179 |
. 2
|
| 60 | elnp1st2nd 7543 |
. 2
| |
| 61 | 35, 59, 60 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-inp 7533 |
| This theorem is referenced by: caucvgprlemladdfu 7744 caucvgprlemladdrl 7745 caucvgprlem1 7746 caucvgprlem2 7747 caucvgpr 7749 |
| Copyright terms: Public domain | W3C validator |