| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprlemcl | Unicode version | ||
| Description: Lemma for caucvgpr 7865. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| caucvgpr.f |
|
| caucvgpr.cau |
|
| caucvgpr.bnd |
|
| caucvgpr.lim |
|
| Ref | Expression |
|---|---|
| caucvgprlemcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgpr.f |
. . . 4
| |
| 2 | caucvgpr.cau |
. . . 4
| |
| 3 | caucvgpr.bnd |
. . . . 5
| |
| 4 | fveq2 5626 |
. . . . . . 7
| |
| 5 | 4 | breq2d 4094 |
. . . . . 6
|
| 6 | 5 | cbvralv 2765 |
. . . . 5
|
| 7 | 3, 6 | sylib 122 |
. . . 4
|
| 8 | caucvgpr.lim |
. . . . 5
| |
| 9 | opeq1 3856 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | eceq1d 6714 |
. . . . . . . . . . . 12
|
| 11 | 10 | fveq2d 5630 |
. . . . . . . . . . 11
|
| 12 | 11 | oveq2d 6016 |
. . . . . . . . . 10
|
| 13 | 12, 4 | breq12d 4095 |
. . . . . . . . 9
|
| 14 | 13 | cbvrexv 2766 |
. . . . . . . 8
|
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | 15 | rabbiia 2784 |
. . . . . 6
|
| 17 | 4, 11 | oveq12d 6018 |
. . . . . . . . . 10
|
| 18 | 17 | breq1d 4092 |
. . . . . . . . 9
|
| 19 | 18 | cbvrexv 2766 |
. . . . . . . 8
|
| 20 | 19 | a1i 9 |
. . . . . . 7
|
| 21 | 20 | rabbiia 2784 |
. . . . . 6
|
| 22 | 16, 21 | opeq12i 3861 |
. . . . 5
|
| 23 | 8, 22 | eqtri 2250 |
. . . 4
|
| 24 | 1, 2, 7, 23 | caucvgprlemm 7851 |
. . 3
|
| 25 | ssrab2 3309 |
. . . . . 6
| |
| 26 | nqex 7546 |
. . . . . . 7
| |
| 27 | 26 | elpw2 4240 |
. . . . . 6
|
| 28 | 25, 27 | mpbir 146 |
. . . . 5
|
| 29 | ssrab2 3309 |
. . . . . 6
| |
| 30 | 26 | elpw2 4240 |
. . . . . 6
|
| 31 | 29, 30 | mpbir 146 |
. . . . 5
|
| 32 | opelxpi 4750 |
. . . . 5
| |
| 33 | 28, 31, 32 | mp2an 426 |
. . . 4
|
| 34 | 8, 33 | eqeltri 2302 |
. . 3
|
| 35 | 24, 34 | jctil 312 |
. 2
|
| 36 | 1, 2, 7, 23 | caucvgprlemrnd 7856 |
. . 3
|
| 37 | breq1 4085 |
. . . . . . 7
| |
| 38 | fveq2 5626 |
. . . . . . . . 9
| |
| 39 | opeq1 3856 |
. . . . . . . . . . . 12
| |
| 40 | 39 | eceq1d 6714 |
. . . . . . . . . . 11
|
| 41 | 40 | fveq2d 5630 |
. . . . . . . . . 10
|
| 42 | 41 | oveq2d 6016 |
. . . . . . . . 9
|
| 43 | 38, 42 | breq12d 4095 |
. . . . . . . 8
|
| 44 | 38, 41 | oveq12d 6018 |
. . . . . . . . 9
|
| 45 | 44 | breq2d 4094 |
. . . . . . . 8
|
| 46 | 43, 45 | anbi12d 473 |
. . . . . . 7
|
| 47 | 37, 46 | imbi12d 234 |
. . . . . 6
|
| 48 | breq2 4086 |
. . . . . . 7
| |
| 49 | fveq2 5626 |
. . . . . . . . . 10
| |
| 50 | 49 | oveq1d 6015 |
. . . . . . . . 9
|
| 51 | 50 | breq2d 4094 |
. . . . . . . 8
|
| 52 | 49 | breq1d 4092 |
. . . . . . . 8
|
| 53 | 51, 52 | anbi12d 473 |
. . . . . . 7
|
| 54 | 48, 53 | imbi12d 234 |
. . . . . 6
|
| 55 | 47, 54 | cbvral2v 2778 |
. . . . 5
|
| 56 | 2, 55 | sylib 122 |
. . . 4
|
| 57 | 1, 56, 7, 23 | caucvgprlemdisj 7857 |
. . 3
|
| 58 | 1, 2, 7, 23 | caucvgprlemloc 7858 |
. . 3
|
| 59 | 36, 57, 58 | 3jca 1201 |
. 2
|
| 60 | elnp1st2nd 7659 |
. 2
| |
| 61 | 35, 59, 60 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-inp 7649 |
| This theorem is referenced by: caucvgprlemladdfu 7860 caucvgprlemladdrl 7861 caucvgprlem1 7862 caucvgprlem2 7863 caucvgpr 7865 |
| Copyright terms: Public domain | W3C validator |