Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprlemcl | Unicode version |
Description: Lemma for caucvgpr 7656. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.) |
Ref | Expression |
---|---|
caucvgpr.f | |
caucvgpr.cau | |
caucvgpr.bnd | |
caucvgpr.lim |
Ref | Expression |
---|---|
caucvgprlemcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgpr.f | . . . 4 | |
2 | caucvgpr.cau | . . . 4 | |
3 | caucvgpr.bnd | . . . . 5 | |
4 | fveq2 5507 | . . . . . . 7 | |
5 | 4 | breq2d 4010 | . . . . . 6 |
6 | 5 | cbvralv 2701 | . . . . 5 |
7 | 3, 6 | sylib 122 | . . . 4 |
8 | caucvgpr.lim | . . . . 5 | |
9 | opeq1 3774 | . . . . . . . . . . . . 13 | |
10 | 9 | eceq1d 6561 | . . . . . . . . . . . 12 |
11 | 10 | fveq2d 5511 | . . . . . . . . . . 11 |
12 | 11 | oveq2d 5881 | . . . . . . . . . 10 |
13 | 12, 4 | breq12d 4011 | . . . . . . . . 9 |
14 | 13 | cbvrexv 2702 | . . . . . . . 8 |
15 | 14 | a1i 9 | . . . . . . 7 |
16 | 15 | rabbiia 2720 | . . . . . 6 |
17 | 4, 11 | oveq12d 5883 | . . . . . . . . . 10 |
18 | 17 | breq1d 4008 | . . . . . . . . 9 |
19 | 18 | cbvrexv 2702 | . . . . . . . 8 |
20 | 19 | a1i 9 | . . . . . . 7 |
21 | 20 | rabbiia 2720 | . . . . . 6 |
22 | 16, 21 | opeq12i 3779 | . . . . 5 |
23 | 8, 22 | eqtri 2196 | . . . 4 |
24 | 1, 2, 7, 23 | caucvgprlemm 7642 | . . 3 |
25 | ssrab2 3238 | . . . . . 6 | |
26 | nqex 7337 | . . . . . . 7 | |
27 | 26 | elpw2 4152 | . . . . . 6 |
28 | 25, 27 | mpbir 146 | . . . . 5 |
29 | ssrab2 3238 | . . . . . 6 | |
30 | 26 | elpw2 4152 | . . . . . 6 |
31 | 29, 30 | mpbir 146 | . . . . 5 |
32 | opelxpi 4652 | . . . . 5 | |
33 | 28, 31, 32 | mp2an 426 | . . . 4 |
34 | 8, 33 | eqeltri 2248 | . . 3 |
35 | 24, 34 | jctil 312 | . 2 |
36 | 1, 2, 7, 23 | caucvgprlemrnd 7647 | . . 3 |
37 | breq1 4001 | . . . . . . 7 | |
38 | fveq2 5507 | . . . . . . . . 9 | |
39 | opeq1 3774 | . . . . . . . . . . . 12 | |
40 | 39 | eceq1d 6561 | . . . . . . . . . . 11 |
41 | 40 | fveq2d 5511 | . . . . . . . . . 10 |
42 | 41 | oveq2d 5881 | . . . . . . . . 9 |
43 | 38, 42 | breq12d 4011 | . . . . . . . 8 |
44 | 38, 41 | oveq12d 5883 | . . . . . . . . 9 |
45 | 44 | breq2d 4010 | . . . . . . . 8 |
46 | 43, 45 | anbi12d 473 | . . . . . . 7 |
47 | 37, 46 | imbi12d 234 | . . . . . 6 |
48 | breq2 4002 | . . . . . . 7 | |
49 | fveq2 5507 | . . . . . . . . . 10 | |
50 | 49 | oveq1d 5880 | . . . . . . . . 9 |
51 | 50 | breq2d 4010 | . . . . . . . 8 |
52 | 49 | breq1d 4008 | . . . . . . . 8 |
53 | 51, 52 | anbi12d 473 | . . . . . . 7 |
54 | 48, 53 | imbi12d 234 | . . . . . 6 |
55 | 47, 54 | cbvral2v 2714 | . . . . 5 |
56 | 2, 55 | sylib 122 | . . . 4 |
57 | 1, 56, 7, 23 | caucvgprlemdisj 7648 | . . 3 |
58 | 1, 2, 7, 23 | caucvgprlemloc 7649 | . . 3 |
59 | 36, 57, 58 | 3jca 1177 | . 2 |
60 | elnp1st2nd 7450 | . 2 | |
61 | 35, 59, 60 | sylanbrc 417 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 w3a 978 wceq 1353 wcel 2146 wral 2453 wrex 2454 crab 2457 wss 3127 cpw 3572 cop 3592 class class class wbr 3998 cxp 4618 wf 5204 cfv 5208 (class class class)co 5865 c1st 6129 c2nd 6130 c1o 6400 cec 6523 cnpi 7246 clti 7249 ceq 7253 cnq 7254 cplq 7256 crq 7258 cltq 7259 cnp 7265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-eprel 4283 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-1o 6407 df-oadd 6411 df-omul 6412 df-er 6525 df-ec 6527 df-qs 6531 df-ni 7278 df-pli 7279 df-mi 7280 df-lti 7281 df-plpq 7318 df-mpq 7319 df-enq 7321 df-nqqs 7322 df-plqqs 7323 df-mqqs 7324 df-1nqqs 7325 df-rq 7326 df-ltnqqs 7327 df-inp 7440 |
This theorem is referenced by: caucvgprlemladdfu 7651 caucvgprlemladdrl 7652 caucvgprlem1 7653 caucvgprlem2 7654 caucvgpr 7656 |
Copyright terms: Public domain | W3C validator |