ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcl Unicode version

Theorem caucvgprlemcl 7788
Description: Lemma for caucvgpr 7794. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemcl  |-  ( ph  ->  L  e.  P. )
Distinct variable groups:    A, j    j, F, l    u, F, j   
n, F, k    j,
k, L    k, n
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    L( u, n, l)

Proof of Theorem caucvgprlemcl
Dummy variables  s  a  c  d  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . . 4  |-  ( ph  ->  F : N. --> Q. )
2 caucvgpr.cau . . . 4  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
3 caucvgpr.bnd . . . . 5  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
4 fveq2 5575 . . . . . . 7  |-  ( j  =  a  ->  ( F `  j )  =  ( F `  a ) )
54breq2d 4055 . . . . . 6  |-  ( j  =  a  ->  ( A  <Q  ( F `  j )  <->  A  <Q  ( F `  a ) ) )
65cbvralv 2737 . . . . 5  |-  ( A. j  e.  N.  A  <Q  ( F `  j
)  <->  A. a  e.  N.  A  <Q  ( F `  a ) )
73, 6sylib 122 . . . 4  |-  ( ph  ->  A. a  e.  N.  A  <Q  ( F `  a ) )
8 caucvgpr.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
9 opeq1 3818 . . . . . . . . . . . . 13  |-  ( j  =  a  ->  <. j ,  1o >.  =  <. a ,  1o >. )
109eceq1d 6655 . . . . . . . . . . . 12  |-  ( j  =  a  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. a ,  1o >. ]  ~Q  )
1110fveq2d 5579 . . . . . . . . . . 11  |-  ( j  =  a  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )
1211oveq2d 5959 . . . . . . . . . 10  |-  ( j  =  a  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
1312, 4breq12d 4056 . . . . . . . . 9  |-  ( j  =  a  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) ) )
1413cbvrexv 2738 . . . . . . . 8  |-  ( E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) )
1514a1i 9 . . . . . . 7  |-  ( l  e.  Q.  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) ) )
1615rabbiia 2756 . . . . . 6  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  =  { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( F `  a ) }
174, 11oveq12d 5961 . . . . . . . . . 10  |-  ( j  =  a  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
1817breq1d 4053 . . . . . . . . 9  |-  ( j  =  a  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u ) )
1918cbvrexv 2738 . . . . . . . 8  |-  ( E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. a  e.  N.  ( ( F `
 a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u )
2019a1i 9 . . . . . . 7  |-  ( u  e.  Q.  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. a  e.  N.  ( ( F `
 a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u ) )
2120rabbiia 2756 . . . . . 6  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  e.  Q.  |  E. a  e.  N.  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u }
2216, 21opeq12i 3823 . . . . 5  |-  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( F `  a ) } ,  { u  e.  Q.  |  E. a  e.  N.  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >.
238, 22eqtri 2225 . . . 4  |-  L  = 
<. { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( F `  a ) } ,  { u  e.  Q.  |  E. a  e.  N.  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >.
241, 2, 7, 23caucvgprlemm 7780 . . 3  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
25 ssrab2 3277 . . . . . 6  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  C_  Q.
26 nqex 7475 . . . . . . 7  |-  Q.  e.  _V
2726elpw2 4200 . . . . . 6  |-  ( { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  ~P Q.  <->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  C_  Q. )
2825, 27mpbir 146 . . . . 5  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  ~P Q.
29 ssrab2 3277 . . . . . 6  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  C_  Q.
3026elpw2 4200 . . . . . 6  |-  ( { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }  e.  ~P Q.  <->  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }  C_  Q. )
3129, 30mpbir 146 . . . . 5  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  ~P Q.
32 opelxpi 4706 . . . . 5  |-  ( ( { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  ~P Q.  /\  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  ~P Q. )  ->  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. ) )
3328, 31, 32mp2an 426 . . . 4  |-  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. )
348, 33eqeltri 2277 . . 3  |-  L  e.  ( ~P Q.  X.  ~P Q. )
3524, 34jctil 312 . 2  |-  ( ph  ->  ( L  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. r  e.  Q.  r  e.  ( 2nd `  L
) ) ) )
361, 2, 7, 23caucvgprlemrnd 7785 . . 3  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
37 breq1 4046 . . . . . . 7  |-  ( n  =  c  ->  (
n  <N  k  <->  c  <N  k ) )
38 fveq2 5575 . . . . . . . . 9  |-  ( n  =  c  ->  ( F `  n )  =  ( F `  c ) )
39 opeq1 3818 . . . . . . . . . . . 12  |-  ( n  =  c  ->  <. n ,  1o >.  =  <. c ,  1o >. )
4039eceq1d 6655 . . . . . . . . . . 11  |-  ( n  =  c  ->  [ <. n ,  1o >. ]  ~Q  =  [ <. c ,  1o >. ]  ~Q  )
4140fveq2d 5579 . . . . . . . . . 10  |-  ( n  =  c  ->  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )
4241oveq2d 5959 . . . . . . . . 9  |-  ( n  =  c  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
4338, 42breq12d 4056 . . . . . . . 8  |-  ( n  =  c  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  c )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
4438, 41oveq12d 5961 . . . . . . . . 9  |-  ( n  =  c  ->  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  c )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
4544breq2d 4055 . . . . . . . 8  |-  ( n  =  c  ->  (
( F `  k
)  <Q  ( ( F `
 n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
4643, 45anbi12d 473 . . . . . . 7  |-  ( n  =  c  ->  (
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  c )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
4737, 46imbi12d 234 . . . . . 6  |-  ( n  =  c  ->  (
( n  <N  k  ->  ( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  <->  ( c  <N  k  ->  ( ( F `  c )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) ) )
48 breq2 4047 . . . . . . 7  |-  ( k  =  d  ->  (
c  <N  k  <->  c  <N  d ) )
49 fveq2 5575 . . . . . . . . . 10  |-  ( k  =  d  ->  ( F `  k )  =  ( F `  d ) )
5049oveq1d 5958 . . . . . . . . 9  |-  ( k  =  d  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  =  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
5150breq2d 4055 . . . . . . . 8  |-  ( k  =  d  ->  (
( F `  c
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <->  ( F `  c )  <Q  (
( F `  d
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
5249breq1d 4053 . . . . . . . 8  |-  ( k  =  d  ->  (
( F `  k
)  <Q  ( ( F `
 c )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <->  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
5351, 52anbi12d 473 . . . . . . 7  |-  ( k  =  d  ->  (
( ( F `  c )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  c )  <Q  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
5448, 53imbi12d 234 . . . . . 6  |-  ( k  =  d  ->  (
( c  <N  k  ->  ( ( F `  c )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )  <->  ( c  <N  d  ->  ( ( F `  c )  <Q  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) ) )
5547, 54cbvral2v 2750 . . . . 5  |-  ( A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  <->  A. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( F `  c )  <Q  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
562, 55sylib 122 . . . 4  |-  ( ph  ->  A. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( F `  c
)  <Q  ( ( F `
 d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  /\  ( F `  d ) 
<Q  ( ( F `  c )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
571, 56, 7, 23caucvgprlemdisj 7786 . . 3  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
581, 2, 7, 23caucvgprlemloc 7787 . . 3  |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
s  <Q  r  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) ) )
5936, 57, 583jca 1179 . 2  |-  ( ph  ->  ( ( A. s  e.  Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) )  /\  A. s  e.  Q.  -.  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  /\  A. s  e.  Q.  A. r  e.  Q.  ( s  <Q 
r  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) ) ) )
60 elnp1st2nd 7588 . 2  |-  ( L  e.  P.  <->  ( ( L  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )  /\  (
( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) )  /\  A. s  e.  Q.  -.  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  /\  A. s  e.  Q.  A. r  e.  Q.  ( s  <Q 
r  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) ) ) ) )
6135, 59, 60sylanbrc 417 1  |-  ( ph  ->  L  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   {crab 2487    C_ wss 3165   ~Pcpw 3615   <.cop 3635   class class class wbr 4043    X. cxp 4672   -->wf 5266   ` cfv 5270  (class class class)co 5943   1stc1st 6223   2ndc2nd 6224   1oc1o 6494   [cec 6617   N.cnpi 7384    <N clti 7387    ~Q ceq 7391   Q.cnq 7392    +Q cplq 7394   *Qcrq 7396    <Q cltq 7397   P.cnp 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-inp 7578
This theorem is referenced by:  caucvgprlemladdfu  7789  caucvgprlemladdrl  7790  caucvgprlem1  7791  caucvgprlem2  7792  caucvgpr  7794
  Copyright terms: Public domain W3C validator