ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemclphr Unicode version

Theorem caucvgprprlemclphr 7853
Description: Lemma for caucvgprpr 7860. The putative limit is a positive real. Like caucvgprprlemcl 7852 but without a disjoint variable condition between  ph and  r. (Contributed by Jim Kingdon, 19-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemclphr  |-  ( ph  ->  L  e.  P. )
Distinct variable groups:    A, m    m, F    A, r    F, l, u, r, k    n, F, k    k, L    u, l, p, q, r    m, r    k, p, q, r   
u, n, l, k
Allowed substitution hints:    ph( u, k, m, n, r, q, p, l)    A( u, k, n, q, p, l)    F( q, p)    L( u, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemclphr
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . 2  |-  ( ph  ->  F : N. --> P. )
2 caucvgprpr.cau . 2  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
3 caucvgprpr.bnd . 2  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
4 caucvgprpr.lim . . 3  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
5 opeq1 3833 . . . . . . . . . . . . . 14  |-  ( r  =  s  ->  <. r ,  1o >.  =  <. s ,  1o >. )
65eceq1d 6679 . . . . . . . . . . . . 13  |-  ( r  =  s  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. s ,  1o >. ]  ~Q  )
76fveq2d 5603 . . . . . . . . . . . 12  |-  ( r  =  s  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) )
87oveq2d 5983 . . . . . . . . . . 11  |-  ( r  =  s  ->  (
l  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) )
98breq2d 4071 . . . . . . . . . 10  |-  ( r  =  s  ->  (
p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( l  +Q  ( *Q
`  [ <. s ,  1o >. ]  ~Q  )
) ) )
109abbidv 2325 . . . . . . . . 9  |-  ( r  =  s  ->  { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) } )
118breq1d 4069 . . . . . . . . . 10  |-  ( r  =  s  ->  (
( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) )  <Q 
q ) )
1211abbidv 2325 . . . . . . . . 9  |-  ( r  =  s  ->  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q }  =  {
q  |  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) 
<Q  q } )
1310, 12opeq12d 3841 . . . . . . . 8  |-  ( r  =  s  ->  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  =  <. { p  |  p  <Q  ( l  +Q  ( *Q
`  [ <. s ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) 
<Q  q } >. )
14 fveq2 5599 . . . . . . . 8  |-  ( r  =  s  ->  ( F `  r )  =  ( F `  s ) )
1513, 14breq12d 4072 . . . . . . 7  |-  ( r  =  s  ->  ( <. { p  |  p 
<Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  s )
) )
1615cbvrexv 2743 . . . . . 6  |-  ( E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. s  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q
`  [ <. s ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  s )
)
1716a1i 9 . . . . 5  |-  ( l  e.  Q.  ->  ( E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. s  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q
`  [ <. s ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  s )
) )
1817rabbiia 2761 . . . 4  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  =  { l  e.  Q.  |  E. s  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  s
) }
197breq2d 4071 . . . . . . . . . . 11  |-  ( r  =  s  ->  (
p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) )
2019abbidv 2325 . . . . . . . . . 10  |-  ( r  =  s  ->  { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. s ,  1o >. ]  ~Q  ) } )
217breq1d 4069 . . . . . . . . . . 11  |-  ( r  =  s  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. s ,  1o >. ]  ~Q  )  <Q  q ) )
2221abbidv 2325 . . . . . . . . . 10  |-  ( r  =  s  ->  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. s ,  1o >. ]  ~Q  )  <Q  q } )
2320, 22opeq12d 3841 . . . . . . . . 9  |-  ( r  =  s  ->  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. s ,  1o >. ]  ~Q  )  <Q 
q } >. )
2414, 23oveq12d 5985 . . . . . . . 8  |-  ( r  =  s  ->  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 s )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. s ,  1o >. ]  ~Q  )  <Q  q } >. ) )
2524breq1d 4069 . . . . . . 7  |-  ( r  =  s  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  ( ( F `
 s )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. s ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. )
)
2625cbvrexv 2743 . . . . . 6  |-  ( E. r  e.  N.  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  E. s  e.  N.  ( ( F `  s )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. s ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. )
2726a1i 9 . . . . 5  |-  ( u  e.  Q.  ->  ( E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  E. s  e.  N.  ( ( F `  s )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. s ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. ) )
2827rabbiia 2761 . . . 4  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  =  { u  e.  Q.  |  E. s  e.  N.  ( ( F `  s )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. s ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
2918, 28opeq12i 3838 . . 3  |-  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.  = 
<. { l  e.  Q.  |  E. s  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  s ) } ,  { u  e.  Q.  |  E. s  e.  N.  ( ( F `
 s )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. s ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
304, 29eqtri 2228 . 2  |-  L  = 
<. { l  e.  Q.  |  E. s  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  s ) } ,  { u  e.  Q.  |  E. s  e.  N.  ( ( F `
 s )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. s ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. s ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
311, 2, 3, 30caucvgprprlemcl 7852 1  |-  ( ph  ->  L  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   {crab 2490   <.cop 3646   class class class wbr 4059   -->wf 5286   ` cfv 5290  (class class class)co 5967   1oc1o 6518   [cec 6641   N.cnpi 7420    <N clti 7423    ~Q ceq 7427   Q.cnq 7428    +Q cplq 7430   *Qcrq 7432    <Q cltq 7433   P.cnp 7439    +P. cpp 7441    <P cltp 7443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-iplp 7616  df-iltp 7618
This theorem is referenced by:  caucvgprprlemexbt  7854  caucvgprprlemexb  7855
  Copyright terms: Public domain W3C validator