ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmdifcom Unicode version

Theorem fndmdifcom 5741
Description: The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdifcom  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  dom  ( G  \  F ) )

Proof of Theorem fndmdifcom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 necom 2484 . . . 4  |-  ( ( F `  x )  =/=  ( G `  x )  <->  ( G `  x )  =/=  ( F `  x )
)
21a1i 9 . . 3  |-  ( x  e.  A  ->  (
( F `  x
)  =/=  ( G `
 x )  <->  ( G `  x )  =/=  ( F `  x )
) )
32rabbiia 2784 . 2  |-  { x  e.  A  |  ( F `  x )  =/=  ( G `  x
) }  =  {
x  e.  A  | 
( G `  x
)  =/=  ( F `
 x ) }
4 fndmdif 5740 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  {
x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) } )
5 fndmdif 5740 . . 3  |-  ( ( G  Fn  A  /\  F  Fn  A )  ->  dom  ( G  \  F )  =  {
x  e.  A  | 
( G `  x
)  =/=  ( F `
 x ) } )
65ancoms 268 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( G  \  F )  =  {
x  e.  A  | 
( G `  x
)  =/=  ( F `
 x ) } )
73, 4, 63eqtr4a 2288 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  dom  ( G  \  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400   {crab 2512    \ cdif 3194   dom cdm 4719    Fn wfn 5313   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator