ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioopos Unicode version

Theorem ioopos 9964
Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
ioopos  |-  ( 0 (,) +oo )  =  { x  e.  RR  |  0  <  x }

Proof of Theorem ioopos
StepHypRef Expression
1 0xr 8018 . . 3  |-  0  e.  RR*
2 pnfxr 8024 . . 3  |- +oo  e.  RR*
3 iooval2 9929 . . 3  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  (
0 (,) +oo )  =  { x  e.  RR  |  ( 0  < 
x  /\  x  < +oo ) } )
41, 2, 3mp2an 426 . 2  |-  ( 0 (,) +oo )  =  { x  e.  RR  |  ( 0  < 
x  /\  x  < +oo ) }
5 ltpnf 9794 . . . 4  |-  ( x  e.  RR  ->  x  < +oo )
65biantrud 304 . . 3  |-  ( x  e.  RR  ->  (
0  <  x  <->  ( 0  <  x  /\  x  < +oo ) ) )
76rabbiia 2734 . 2  |-  { x  e.  RR  |  0  < 
x }  =  {
x  e.  RR  | 
( 0  <  x  /\  x  < +oo ) }
84, 7eqtr4i 2211 1  |-  ( 0 (,) +oo )  =  { x  e.  RR  |  0  <  x }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1363    e. wcel 2158   {crab 2469   class class class wbr 4015  (class class class)co 5888   RRcr 7824   0cc0 7825   +oocpnf 8003   RR*cxr 8005    < clt 8006   (,)cioo 9902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-ioo 9906
This theorem is referenced by:  ioorp  9965  repos  9984
  Copyright terms: Public domain W3C validator