ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioopos Unicode version

Theorem ioopos 9262
Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
ioopos  |-  ( 0 (,) +oo )  =  { x  e.  RR  |  0  <  x }

Proof of Theorem ioopos
StepHypRef Expression
1 0xr 7436 . . 3  |-  0  e.  RR*
2 pnfxr 7442 . . 3  |- +oo  e.  RR*
3 iooval2 9227 . . 3  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  (
0 (,) +oo )  =  { x  e.  RR  |  ( 0  < 
x  /\  x  < +oo ) } )
41, 2, 3mp2an 417 . 2  |-  ( 0 (,) +oo )  =  { x  e.  RR  |  ( 0  < 
x  /\  x  < +oo ) }
5 ltpnf 9145 . . . 4  |-  ( x  e.  RR  ->  x  < +oo )
65biantrud 298 . . 3  |-  ( x  e.  RR  ->  (
0  <  x  <->  ( 0  <  x  /\  x  < +oo ) ) )
76rabbiia 2597 . 2  |-  { x  e.  RR  |  0  < 
x }  =  {
x  e.  RR  | 
( 0  <  x  /\  x  < +oo ) }
84, 7eqtr4i 2106 1  |-  ( 0 (,) +oo )  =  { x  e.  RR  |  0  <  x }
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285    e. wcel 1434   {crab 2357   class class class wbr 3811  (class class class)co 5590   RRcr 7251   0cc0 7252   +oocpnf 7421   RR*cxr 7423    < clt 7424   (,)cioo 9200
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7338  ax-resscn 7339  ax-1re 7341  ax-addrcl 7344  ax-rnegex 7356  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4083  df-po 4086  df-iso 4087  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-iota 4933  df-fun 4970  df-fv 4976  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430  df-ioo 9204
This theorem is referenced by:  ioorp  9263  repos  9282
  Copyright terms: Public domain W3C validator