ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbasg Unicode version

Theorem psrbasg 14511
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s  |-  S  =  ( I mPwSer  R )
psrbas.k  |-  K  =  ( Base `  R
)
psrbas.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrbas.b  |-  B  =  ( Base `  S
)
psrbas.i  |-  ( ph  ->  I  e.  V )
psrbasg.r  |-  ( ph  ->  R  e.  W )
Assertion
Ref Expression
psrbasg  |-  ( ph  ->  B  =  ( K  ^m  D ) )
Distinct variable group:    f, I
Allowed substitution hints:    ph( f)    B( f)    D( f)    R( f)    S( f)    K( f)    V( f)    W( f)

Proof of Theorem psrbasg
Dummy variables  g  h  k  p  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . 4  |-  S  =  ( I mPwSer  R )
2 psrbas.k . . . 4  |-  K  =  ( Base `  R
)
3 eqid 2206 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2206 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2206 . . . 4  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
6 psrbas.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
7 eqidd 2207 . . . 4  |-  ( ph  ->  ( K  ^m  D
)  =  ( K  ^m  D ) )
8 eqid 2206 . . . 4  |-  (  oF ( +g  `  R
)  |`  ( ( K  ^m  D )  X.  ( K  ^m  D
) ) )  =  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) )
9 eqid 2206 . . . 4  |-  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D
)  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( g `  x ) ( .r
`  R ) ( h `  ( k  oF  -  x
) ) ) ) ) ) )  =  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) )
10 eqid 2206 . . . 4  |-  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  { x } )  oF ( .r `  R
) g ) )  =  ( x  e.  K ,  g  e.  ( K  ^m  D
)  |->  ( ( D  X.  { x }
)  oF ( .r `  R ) g ) )
11 eqidd 2207 . . . 4  |-  ( ph  ->  ( Xt_ `  ( D  X.  { ( TopOpen `  R ) } ) )  =  ( Xt_ `  ( D  X.  {
( TopOpen `  R ) } ) ) )
12 psrbas.i . . . 4  |-  ( ph  ->  I  e.  V )
13 psrbasg.r . . . 4  |-  ( ph  ->  R  e.  W )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13psrval 14503 . . 3  |-  ( ph  ->  S  =  ( {
<. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) )
1514fveq2d 5593 . 2  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  ( { <. ( Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) ) )
16 psrbas.b . . 3  |-  B  =  ( Base `  S
)
1716a1i 9 . 2  |-  ( ph  ->  B  =  ( Base `  S ) )
18 basfn 12965 . . . . . . . 8  |-  Base  Fn  _V
1913elexd 2787 . . . . . . . 8  |-  ( ph  ->  R  e.  _V )
20 funfvex 5606 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2120funfni 5385 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2218, 19, 21sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  R
)  e.  _V )
232, 22eqeltrid 2293 . . . . . 6  |-  ( ph  ->  K  e.  _V )
24 nn0ex 9321 . . . . . . . . 9  |-  NN0  e.  _V
25 mapvalg 6758 . . . . . . . . 9  |-  ( ( NN0  e.  _V  /\  I  e.  V )  ->  ( NN0  ^m  I
)  =  { p  |  p : I --> NN0 }
)
2624, 12, 25sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( NN0  ^m  I
)  =  { p  |  p : I --> NN0 }
)
2724a1i 9 . . . . . . . . 9  |-  ( ph  ->  NN0  e.  _V )
28 mapex 6754 . . . . . . . . 9  |-  ( ( I  e.  V  /\  NN0 
e.  _V )  ->  { p  |  p : I --> NN0 }  e.  _V )
2912, 27, 28syl2anc 411 . . . . . . . 8  |-  ( ph  ->  { p  |  p : I --> NN0 }  e.  _V )
3026, 29eqeltrd 2283 . . . . . . 7  |-  ( ph  ->  ( NN0  ^m  I
)  e.  _V )
316, 30rabexd 4197 . . . . . 6  |-  ( ph  ->  D  e.  _V )
32 mapvalg 6758 . . . . . 6  |-  ( ( K  e.  _V  /\  D  e.  _V )  ->  ( K  ^m  D
)  =  { p  |  p : D --> K }
)
3323, 31, 32syl2anc 411 . . . . 5  |-  ( ph  ->  ( K  ^m  D
)  =  { p  |  p : D --> K }
)
34 mapex 6754 . . . . . 6  |-  ( ( D  e.  _V  /\  K  e.  _V )  ->  { p  |  p : D --> K }  e.  _V )
3531, 23, 34syl2anc 411 . . . . 5  |-  ( ph  ->  { p  |  p : D --> K }  e.  _V )
3633, 35eqeltrd 2283 . . . 4  |-  ( ph  ->  ( K  ^m  D
)  e.  _V )
3736, 36ofmresex 6235 . . . 4  |-  ( ph  ->  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) )  e.  _V )
38 mpoexga 6311 . . . . 5  |-  ( ( ( K  ^m  D
)  e.  _V  /\  ( K  ^m  D )  e.  _V )  -> 
( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) )  e.  _V )
3936, 36, 38syl2anc 411 . . . 4  |-  ( ph  ->  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) )  e.  _V )
40 mpoexga 6311 . . . . 5  |-  ( ( K  e.  _V  /\  ( K  ^m  D )  e.  _V )  -> 
( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) )  e.  _V )
4123, 36, 40syl2anc 411 . . . 4  |-  ( ph  ->  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) )  e.  _V )
42 topnfn 13151 . . . . . . . 8  |-  TopOpen  Fn  _V
43 funfvex 5606 . . . . . . . . 9  |-  ( ( Fun  TopOpen  /\  R  e.  dom 
TopOpen )  ->  ( TopOpen `  R )  e.  _V )
4443funfni 5385 . . . . . . . 8  |-  ( (
TopOpen  Fn  _V  /\  R  e.  _V )  ->  ( TopOpen
`  R )  e. 
_V )
4542, 19, 44sylancr 414 . . . . . . 7  |-  ( ph  ->  ( TopOpen `  R )  e.  _V )
46 snexg 4236 . . . . . . 7  |-  ( (
TopOpen `  R )  e. 
_V  ->  { ( TopOpen `  R ) }  e.  _V )
4745, 46syl 14 . . . . . 6  |-  ( ph  ->  { ( TopOpen `  R
) }  e.  _V )
48 xpexg 4797 . . . . . 6  |-  ( ( D  e.  _V  /\  { ( TopOpen `  R ) }  e.  _V )  ->  ( D  X.  {
( TopOpen `  R ) } )  e.  _V )
4931, 47, 48syl2anc 411 . . . . 5  |-  ( ph  ->  ( D  X.  {
( TopOpen `  R ) } )  e.  _V )
50 ptex 13171 . . . . 5  |-  ( ( D  X.  { (
TopOpen `  R ) } )  e.  _V  ->  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )  e.  _V )
5149, 50syl 14 . . . 4  |-  ( ph  ->  ( Xt_ `  ( D  X.  { ( TopOpen `  R ) } ) )  e.  _V )
5236, 37, 39, 13, 41, 51psrvalstrd 14505 . . 3  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) Struct  <. 1 ,  9 >. )
53 basendxnn 12963 . . . . 5  |-  ( Base `  ndx )  e.  NN
54 opexg 4280 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  ( K  ^m  D )  e. 
_V )  ->  <. ( Base `  ndx ) ,  ( K  ^m  D
) >.  e.  _V )
5553, 36, 54sylancr 414 . . . 4  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( K  ^m  D ) >.  e.  _V )
56 tpid1g 3750 . . . 4  |-  ( <.
( Base `  ndx ) ,  ( K  ^m  D
) >.  e.  _V  ->  <.
( Base `  ndx ) ,  ( K  ^m  D
) >.  e.  { <. (
Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. } )
57 elun1 3344 . . . 4  |-  ( <.
( Base `  ndx ) ,  ( K  ^m  D
) >.  e.  { <. (
Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  ->  <. ( Base `  ndx ) ,  ( K  ^m  D
) >.  e.  ( {
<. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) )
5855, 56, 573syl 17 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( K  ^m  D ) >.  e.  ( { <. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) )
5952, 36, 58opelstrbas 13022 . 2  |-  ( ph  ->  ( K  ^m  D
)  =  ( Base `  ( { <. ( Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) ) )
6015, 17, 593eqtr4d 2249 1  |-  ( ph  ->  B  =  ( K  ^m  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   {cab 2192   {crab 2489   _Vcvv 2773    u. cun 3168   {csn 3638   {ctp 3640   <.cop 3641   class class class wbr 4051    |-> cmpt 4113    X. cxp 4681   `'ccnv 4682    |` cres 4685   "cima 4686    Fn wfn 5275   -->wf 5276   ` cfv 5280  (class class class)co 5957    e. cmpo 5959    oFcof 6169    oRcofr 6170    ^m cmap 6748   Fincfn 6840   1c1 7946    <_ cle 8128    - cmin 8263   NNcn 9056   9c9 9114   NN0cn0 9315   ndxcnx 12904   Basecbs 12907   +g cplusg 12984   .rcmulr 12985  Scalarcsca 12987   .scvsca 12988  TopSetcts 12990   TopOpenctopn 13147   Xt_cpt 13162    gsumg cgsu 13164   mPwSer cmps 14498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-of 6171  df-1st 6239  df-2nd 6240  df-map 6750  df-ixp 6799  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-struct 12909  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-tset 13003  df-rest 13148  df-topn 13149  df-topgen 13167  df-pt 13168  df-psr 14500
This theorem is referenced by:  psrelbas  14512  psrplusgg  14515  psraddcl  14517  psr0cl  14518  psrnegcl  14520  psrgrp  14522  psr1clfi  14525
  Copyright terms: Public domain W3C validator