| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrbasg | Unicode version | ||
| Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| psrbas.s |
|
| psrbas.k |
|
| psrbas.d |
|
| psrbas.b |
|
| psrbas.i |
|
| psrbasg.r |
|
| Ref | Expression |
|---|---|
| psrbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbas.s |
. . . 4
| |
| 2 | psrbas.k |
. . . 4
| |
| 3 | eqid 2206 |
. . . 4
| |
| 4 | eqid 2206 |
. . . 4
| |
| 5 | eqid 2206 |
. . . 4
| |
| 6 | psrbas.d |
. . . 4
| |
| 7 | eqidd 2207 |
. . . 4
| |
| 8 | eqid 2206 |
. . . 4
| |
| 9 | eqid 2206 |
. . . 4
| |
| 10 | eqid 2206 |
. . . 4
| |
| 11 | eqidd 2207 |
. . . 4
| |
| 12 | psrbas.i |
. . . 4
| |
| 13 | psrbasg.r |
. . . 4
| |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | psrval 14503 |
. . 3
|
| 15 | 14 | fveq2d 5593 |
. 2
|
| 16 | psrbas.b |
. . 3
| |
| 17 | 16 | a1i 9 |
. 2
|
| 18 | basfn 12965 |
. . . . . . . 8
| |
| 19 | 13 | elexd 2787 |
. . . . . . . 8
|
| 20 | funfvex 5606 |
. . . . . . . . 9
| |
| 21 | 20 | funfni 5385 |
. . . . . . . 8
|
| 22 | 18, 19, 21 | sylancr 414 |
. . . . . . 7
|
| 23 | 2, 22 | eqeltrid 2293 |
. . . . . 6
|
| 24 | nn0ex 9321 |
. . . . . . . . 9
| |
| 25 | mapvalg 6758 |
. . . . . . . . 9
| |
| 26 | 24, 12, 25 | sylancr 414 |
. . . . . . . 8
|
| 27 | 24 | a1i 9 |
. . . . . . . . 9
|
| 28 | mapex 6754 |
. . . . . . . . 9
| |
| 29 | 12, 27, 28 | syl2anc 411 |
. . . . . . . 8
|
| 30 | 26, 29 | eqeltrd 2283 |
. . . . . . 7
|
| 31 | 6, 30 | rabexd 4197 |
. . . . . 6
|
| 32 | mapvalg 6758 |
. . . . . 6
| |
| 33 | 23, 31, 32 | syl2anc 411 |
. . . . 5
|
| 34 | mapex 6754 |
. . . . . 6
| |
| 35 | 31, 23, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 33, 35 | eqeltrd 2283 |
. . . 4
|
| 37 | 36, 36 | ofmresex 6235 |
. . . 4
|
| 38 | mpoexga 6311 |
. . . . 5
| |
| 39 | 36, 36, 38 | syl2anc 411 |
. . . 4
|
| 40 | mpoexga 6311 |
. . . . 5
| |
| 41 | 23, 36, 40 | syl2anc 411 |
. . . 4
|
| 42 | topnfn 13151 |
. . . . . . . 8
| |
| 43 | funfvex 5606 |
. . . . . . . . 9
| |
| 44 | 43 | funfni 5385 |
. . . . . . . 8
|
| 45 | 42, 19, 44 | sylancr 414 |
. . . . . . 7
|
| 46 | snexg 4236 |
. . . . . . 7
| |
| 47 | 45, 46 | syl 14 |
. . . . . 6
|
| 48 | xpexg 4797 |
. . . . . 6
| |
| 49 | 31, 47, 48 | syl2anc 411 |
. . . . 5
|
| 50 | ptex 13171 |
. . . . 5
| |
| 51 | 49, 50 | syl 14 |
. . . 4
|
| 52 | 36, 37, 39, 13, 41, 51 | psrvalstrd 14505 |
. . 3
|
| 53 | basendxnn 12963 |
. . . . 5
| |
| 54 | opexg 4280 |
. . . . 5
| |
| 55 | 53, 36, 54 | sylancr 414 |
. . . 4
|
| 56 | tpid1g 3750 |
. . . 4
| |
| 57 | elun1 3344 |
. . . 4
| |
| 58 | 55, 56, 57 | 3syl 17 |
. . 3
|
| 59 | 52, 36, 58 | opelstrbas 13022 |
. 2
|
| 60 | 15, 17, 59 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-of 6171 df-1st 6239 df-2nd 6240 df-map 6750 df-ixp 6799 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 df-struct 12909 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-mulr 12998 df-sca 13000 df-vsca 13001 df-tset 13003 df-rest 13148 df-topn 13149 df-topgen 13167 df-pt 13168 df-psr 14500 |
| This theorem is referenced by: psrelbas 14512 psrplusgg 14515 psraddcl 14517 psr0cl 14518 psrnegcl 14520 psrgrp 14522 psr1clfi 14525 |
| Copyright terms: Public domain | W3C validator |