ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbasg Unicode version

Theorem psrbasg 14170
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s  |-  S  =  ( I mPwSer  R )
psrbas.k  |-  K  =  ( Base `  R
)
psrbas.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrbas.b  |-  B  =  ( Base `  S
)
psrbas.i  |-  ( ph  ->  I  e.  V )
psrbasg.r  |-  ( ph  ->  R  e.  W )
Assertion
Ref Expression
psrbasg  |-  ( ph  ->  B  =  ( K  ^m  D ) )
Distinct variable group:    f, I
Allowed substitution hints:    ph( f)    B( f)    D( f)    R( f)    S( f)    K( f)    V( f)    W( f)

Proof of Theorem psrbasg
Dummy variables  g  h  k  p  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . 4  |-  S  =  ( I mPwSer  R )
2 psrbas.k . . . 4  |-  K  =  ( Base `  R
)
3 eqid 2193 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2193 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2193 . . . 4  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
6 psrbas.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
7 eqidd 2194 . . . 4  |-  ( ph  ->  ( K  ^m  D
)  =  ( K  ^m  D ) )
8 eqid 2193 . . . 4  |-  (  oF ( +g  `  R
)  |`  ( ( K  ^m  D )  X.  ( K  ^m  D
) ) )  =  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) )
9 eqid 2193 . . . 4  |-  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D
)  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( g `  x ) ( .r
`  R ) ( h `  ( k  oF  -  x
) ) ) ) ) ) )  =  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) )
10 eqid 2193 . . . 4  |-  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  { x } )  oF ( .r `  R
) g ) )  =  ( x  e.  K ,  g  e.  ( K  ^m  D
)  |->  ( ( D  X.  { x }
)  oF ( .r `  R ) g ) )
11 eqidd 2194 . . . 4  |-  ( ph  ->  ( Xt_ `  ( D  X.  { ( TopOpen `  R ) } ) )  =  ( Xt_ `  ( D  X.  {
( TopOpen `  R ) } ) ) )
12 psrbas.i . . . 4  |-  ( ph  ->  I  e.  V )
13 psrbasg.r . . . 4  |-  ( ph  ->  R  e.  W )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13psrval 14163 . . 3  |-  ( ph  ->  S  =  ( {
<. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) )
1514fveq2d 5559 . 2  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  ( { <. ( Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) ) )
16 psrbas.b . . 3  |-  B  =  ( Base `  S
)
1716a1i 9 . 2  |-  ( ph  ->  B  =  ( Base `  S ) )
18 basfn 12679 . . . . . . . 8  |-  Base  Fn  _V
1913elexd 2773 . . . . . . . 8  |-  ( ph  ->  R  e.  _V )
20 funfvex 5572 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2120funfni 5355 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2218, 19, 21sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  R
)  e.  _V )
232, 22eqeltrid 2280 . . . . . 6  |-  ( ph  ->  K  e.  _V )
24 nn0ex 9249 . . . . . . . . 9  |-  NN0  e.  _V
25 mapvalg 6714 . . . . . . . . 9  |-  ( ( NN0  e.  _V  /\  I  e.  V )  ->  ( NN0  ^m  I
)  =  { p  |  p : I --> NN0 }
)
2624, 12, 25sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( NN0  ^m  I
)  =  { p  |  p : I --> NN0 }
)
2724a1i 9 . . . . . . . . 9  |-  ( ph  ->  NN0  e.  _V )
28 mapex 6710 . . . . . . . . 9  |-  ( ( I  e.  V  /\  NN0 
e.  _V )  ->  { p  |  p : I --> NN0 }  e.  _V )
2912, 27, 28syl2anc 411 . . . . . . . 8  |-  ( ph  ->  { p  |  p : I --> NN0 }  e.  _V )
3026, 29eqeltrd 2270 . . . . . . 7  |-  ( ph  ->  ( NN0  ^m  I
)  e.  _V )
316, 30rabexd 4175 . . . . . 6  |-  ( ph  ->  D  e.  _V )
32 mapvalg 6714 . . . . . 6  |-  ( ( K  e.  _V  /\  D  e.  _V )  ->  ( K  ^m  D
)  =  { p  |  p : D --> K }
)
3323, 31, 32syl2anc 411 . . . . 5  |-  ( ph  ->  ( K  ^m  D
)  =  { p  |  p : D --> K }
)
34 mapex 6710 . . . . . 6  |-  ( ( D  e.  _V  /\  K  e.  _V )  ->  { p  |  p : D --> K }  e.  _V )
3531, 23, 34syl2anc 411 . . . . 5  |-  ( ph  ->  { p  |  p : D --> K }  e.  _V )
3633, 35eqeltrd 2270 . . . 4  |-  ( ph  ->  ( K  ^m  D
)  e.  _V )
3736, 36ofmresex 6191 . . . 4  |-  ( ph  ->  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) )  e.  _V )
38 mpoexga 6267 . . . . 5  |-  ( ( ( K  ^m  D
)  e.  _V  /\  ( K  ^m  D )  e.  _V )  -> 
( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) )  e.  _V )
3936, 36, 38syl2anc 411 . . . 4  |-  ( ph  ->  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) )  e.  _V )
40 mpoexga 6267 . . . . 5  |-  ( ( K  e.  _V  /\  ( K  ^m  D )  e.  _V )  -> 
( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) )  e.  _V )
4123, 36, 40syl2anc 411 . . . 4  |-  ( ph  ->  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) )  e.  _V )
42 topnfn 12858 . . . . . . . 8  |-  TopOpen  Fn  _V
43 funfvex 5572 . . . . . . . . 9  |-  ( ( Fun  TopOpen  /\  R  e.  dom 
TopOpen )  ->  ( TopOpen `  R )  e.  _V )
4443funfni 5355 . . . . . . . 8  |-  ( (
TopOpen  Fn  _V  /\  R  e.  _V )  ->  ( TopOpen
`  R )  e. 
_V )
4542, 19, 44sylancr 414 . . . . . . 7  |-  ( ph  ->  ( TopOpen `  R )  e.  _V )
46 snexg 4214 . . . . . . 7  |-  ( (
TopOpen `  R )  e. 
_V  ->  { ( TopOpen `  R ) }  e.  _V )
4745, 46syl 14 . . . . . 6  |-  ( ph  ->  { ( TopOpen `  R
) }  e.  _V )
48 xpexg 4774 . . . . . 6  |-  ( ( D  e.  _V  /\  { ( TopOpen `  R ) }  e.  _V )  ->  ( D  X.  {
( TopOpen `  R ) } )  e.  _V )
4931, 47, 48syl2anc 411 . . . . 5  |-  ( ph  ->  ( D  X.  {
( TopOpen `  R ) } )  e.  _V )
50 ptex 12878 . . . . 5  |-  ( ( D  X.  { (
TopOpen `  R ) } )  e.  _V  ->  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )  e.  _V )
5149, 50syl 14 . . . 4  |-  ( ph  ->  ( Xt_ `  ( D  X.  { ( TopOpen `  R ) } ) )  e.  _V )
5236, 37, 39, 13, 41, 51psrvalstrd 14165 . . 3  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) Struct  <. 1 ,  9 >. )
53 basendxnn 12677 . . . . 5  |-  ( Base `  ndx )  e.  NN
54 opexg 4258 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  ( K  ^m  D )  e. 
_V )  ->  <. ( Base `  ndx ) ,  ( K  ^m  D
) >.  e.  _V )
5553, 36, 54sylancr 414 . . . 4  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( K  ^m  D ) >.  e.  _V )
56 tpid1g 3731 . . . 4  |-  ( <.
( Base `  ndx ) ,  ( K  ^m  D
) >.  e.  _V  ->  <.
( Base `  ndx ) ,  ( K  ^m  D
) >.  e.  { <. (
Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. } )
57 elun1 3327 . . . 4  |-  ( <.
( Base `  ndx ) ,  ( K  ^m  D
) >.  e.  { <. (
Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  ->  <. ( Base `  ndx ) ,  ( K  ^m  D
) >.  e.  ( {
<. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) )
5855, 56, 573syl 17 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( K  ^m  D ) >.  e.  ( { <. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) )
5952, 36, 58opelstrbas 12736 . 2  |-  ( ph  ->  ( K  ^m  D
)  =  ( Base `  ( { <. ( Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) ) )
6015, 17, 593eqtr4d 2236 1  |-  ( ph  ->  B  =  ( K  ^m  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {cab 2179   {crab 2476   _Vcvv 2760    u. cun 3152   {csn 3619   {ctp 3621   <.cop 3622   class class class wbr 4030    |-> cmpt 4091    X. cxp 4658   `'ccnv 4659    |` cres 4662   "cima 4663    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919    e. cmpo 5921    oFcof 6130    oRcofr 6131    ^m cmap 6704   Fincfn 6796   1c1 7875    <_ cle 8057    - cmin 8192   NNcn 8984   9c9 9042   NN0cn0 9243   ndxcnx 12618   Basecbs 12621   +g cplusg 12698   .rcmulr 12699  Scalarcsca 12701   .scvsca 12702  TopSetcts 12704   TopOpenctopn 12854   Xt_cpt 12869    gsumg cgsu 12871   mPwSer cmps 14160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-map 6706  df-ixp 6755  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-tset 12717  df-rest 12855  df-topn 12856  df-topgen 12874  df-pt 12875  df-psr 14161
This theorem is referenced by:  psrelbas  14171  psrplusgg  14173  psraddcl  14175
  Copyright terms: Public domain W3C validator