| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrbasg | Unicode version | ||
| Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| psrbas.s |
|
| psrbas.k |
|
| psrbas.d |
|
| psrbas.b |
|
| psrbas.i |
|
| psrbasg.r |
|
| Ref | Expression |
|---|---|
| psrbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbas.s |
. . . 4
| |
| 2 | psrbas.k |
. . . 4
| |
| 3 | eqid 2204 |
. . . 4
| |
| 4 | eqid 2204 |
. . . 4
| |
| 5 | eqid 2204 |
. . . 4
| |
| 6 | psrbas.d |
. . . 4
| |
| 7 | eqidd 2205 |
. . . 4
| |
| 8 | eqid 2204 |
. . . 4
| |
| 9 | eqid 2204 |
. . . 4
| |
| 10 | eqid 2204 |
. . . 4
| |
| 11 | eqidd 2205 |
. . . 4
| |
| 12 | psrbas.i |
. . . 4
| |
| 13 | psrbasg.r |
. . . 4
| |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | psrval 14370 |
. . 3
|
| 15 | 14 | fveq2d 5579 |
. 2
|
| 16 | psrbas.b |
. . 3
| |
| 17 | 16 | a1i 9 |
. 2
|
| 18 | basfn 12832 |
. . . . . . . 8
| |
| 19 | 13 | elexd 2784 |
. . . . . . . 8
|
| 20 | funfvex 5592 |
. . . . . . . . 9
| |
| 21 | 20 | funfni 5375 |
. . . . . . . 8
|
| 22 | 18, 19, 21 | sylancr 414 |
. . . . . . 7
|
| 23 | 2, 22 | eqeltrid 2291 |
. . . . . 6
|
| 24 | nn0ex 9300 |
. . . . . . . . 9
| |
| 25 | mapvalg 6744 |
. . . . . . . . 9
| |
| 26 | 24, 12, 25 | sylancr 414 |
. . . . . . . 8
|
| 27 | 24 | a1i 9 |
. . . . . . . . 9
|
| 28 | mapex 6740 |
. . . . . . . . 9
| |
| 29 | 12, 27, 28 | syl2anc 411 |
. . . . . . . 8
|
| 30 | 26, 29 | eqeltrd 2281 |
. . . . . . 7
|
| 31 | 6, 30 | rabexd 4188 |
. . . . . 6
|
| 32 | mapvalg 6744 |
. . . . . 6
| |
| 33 | 23, 31, 32 | syl2anc 411 |
. . . . 5
|
| 34 | mapex 6740 |
. . . . . 6
| |
| 35 | 31, 23, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 33, 35 | eqeltrd 2281 |
. . . 4
|
| 37 | 36, 36 | ofmresex 6221 |
. . . 4
|
| 38 | mpoexga 6297 |
. . . . 5
| |
| 39 | 36, 36, 38 | syl2anc 411 |
. . . 4
|
| 40 | mpoexga 6297 |
. . . . 5
| |
| 41 | 23, 36, 40 | syl2anc 411 |
. . . 4
|
| 42 | topnfn 13018 |
. . . . . . . 8
| |
| 43 | funfvex 5592 |
. . . . . . . . 9
| |
| 44 | 43 | funfni 5375 |
. . . . . . . 8
|
| 45 | 42, 19, 44 | sylancr 414 |
. . . . . . 7
|
| 46 | snexg 4227 |
. . . . . . 7
| |
| 47 | 45, 46 | syl 14 |
. . . . . 6
|
| 48 | xpexg 4788 |
. . . . . 6
| |
| 49 | 31, 47, 48 | syl2anc 411 |
. . . . 5
|
| 50 | ptex 13038 |
. . . . 5
| |
| 51 | 49, 50 | syl 14 |
. . . 4
|
| 52 | 36, 37, 39, 13, 41, 51 | psrvalstrd 14372 |
. . 3
|
| 53 | basendxnn 12830 |
. . . . 5
| |
| 54 | opexg 4271 |
. . . . 5
| |
| 55 | 53, 36, 54 | sylancr 414 |
. . . 4
|
| 56 | tpid1g 3744 |
. . . 4
| |
| 57 | elun1 3339 |
. . . 4
| |
| 58 | 55, 56, 57 | 3syl 17 |
. . 3
|
| 59 | 52, 36, 58 | opelstrbas 12889 |
. 2
|
| 60 | 15, 17, 59 | 3eqtr4d 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 df-1st 6225 df-2nd 6226 df-map 6736 df-ixp 6785 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-struct 12776 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-mulr 12865 df-sca 12867 df-vsca 12868 df-tset 12870 df-rest 13015 df-topn 13016 df-topgen 13034 df-pt 13035 df-psr 14367 |
| This theorem is referenced by: psrelbas 14379 psrplusgg 14382 psraddcl 14384 psr0cl 14385 psrnegcl 14387 psrgrp 14389 psr1clfi 14392 |
| Copyright terms: Public domain | W3C validator |