| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > incistruhgr | Unicode version | ||
| Description: An incidence
structure |
| Ref | Expression |
|---|---|
| incistruhgr.v |
|
| incistruhgr.e |
|
| Ref | Expression |
|---|---|
| incistruhgr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 2765 |
. . . . . . . . 9
| |
| 2 | 1 | mpteq2dv 4139 |
. . . . . . . 8
|
| 3 | 2 | eqeq2d 2218 |
. . . . . . 7
|
| 4 | xpeq1 4693 |
. . . . . . . . 9
| |
| 5 | 4 | sseq2d 3224 |
. . . . . . . 8
|
| 6 | 5 | 3anbi2d 1330 |
. . . . . . 7
|
| 7 | 3, 6 | anbi12d 473 |
. . . . . 6
|
| 8 | simpl 109 |
. . . . . . . 8
| |
| 9 | dmeq 4883 |
. . . . . . . . 9
| |
| 10 | eqid 2206 |
. . . . . . . . . 10
| |
| 11 | eqid 2206 |
. . . . . . . . . . 11
| |
| 12 | incistruhgr.v |
. . . . . . . . . . . 12
| |
| 13 | simpl1 1003 |
. . . . . . . . . . . . 13
| |
| 14 | vtxex 15661 |
. . . . . . . . . . . . 13
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . . . . . 12
|
| 16 | 12, 15 | eqeltrid 2293 |
. . . . . . . . . . 11
|
| 17 | 11, 16 | rabexd 4193 |
. . . . . . . . . 10
|
| 18 | 10, 17 | dmmptd 5412 |
. . . . . . . . 9
|
| 19 | 9, 18 | sylan9eq 2259 |
. . . . . . . 8
|
| 20 | 8, 19 | jca 306 |
. . . . . . 7
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | eleq2 2270 |
. . . . . . . . . . 11
| |
| 23 | 22 | exbidv 1849 |
. . . . . . . . . 10
|
| 24 | ssrab2 3279 |
. . . . . . . . . . 11
| |
| 25 | elpwg 3625 |
. . . . . . . . . . . 12
| |
| 26 | 17, 25 | syl 14 |
. . . . . . . . . . 11
|
| 27 | 24, 26 | mpbiri 168 |
. . . . . . . . . 10
|
| 28 | eleq2 2270 |
. . . . . . . . . . . . . 14
| |
| 29 | 28 | 3ad2ant3 1023 |
. . . . . . . . . . . . 13
|
| 30 | ssrelrn 4874 |
. . . . . . . . . . . . . . 15
| |
| 31 | 30 | ex 115 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | 3ad2ant2 1022 |
. . . . . . . . . . . . 13
|
| 33 | 29, 32 | sylbird 170 |
. . . . . . . . . . . 12
|
| 34 | 33 | imp 124 |
. . . . . . . . . . 11
|
| 35 | rabn0m 3489 |
. . . . . . . . . . 11
| |
| 36 | 34, 35 | sylibr 134 |
. . . . . . . . . 10
|
| 37 | 23, 27, 36 | elrabd 2932 |
. . . . . . . . 9
|
| 38 | 37 | fmpttd 5742 |
. . . . . . . 8
|
| 39 | simpl 109 |
. . . . . . . . 9
| |
| 40 | simpr 110 |
. . . . . . . . 9
| |
| 41 | 39, 40 | feq12d 5421 |
. . . . . . . 8
|
| 42 | 38, 41 | imbitrrid 156 |
. . . . . . 7
|
| 43 | 20, 21, 42 | sylc 62 |
. . . . . 6
|
| 44 | 7, 43 | biimtrrdi 164 |
. . . . 5
|
| 45 | 44 | expdimp 259 |
. . . 4
|
| 46 | 45 | impcom 125 |
. . 3
|
| 47 | incistruhgr.e |
. . . . . 6
| |
| 48 | 12, 47 | isuhgrm 15711 |
. . . . 5
|
| 49 | 48 | 3ad2ant1 1021 |
. . . 4
|
| 50 | 49 | adantr 276 |
. . 3
|
| 51 | 46, 50 | mpbird 167 |
. 2
|
| 52 | 51 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fo 5282 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-sub 8252 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-dec 9512 df-ndx 12879 df-slot 12880 df-base 12882 df-edgf 15648 df-vtx 15657 df-iedg 15658 df-uhgrm 15709 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |