| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psr1clfi | Unicode version | ||
| Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrring.s |
|
| psrringfi.i |
|
| psrring.r |
|
| psr1cl.d |
|
| psr1cl.z |
|
| psr1cl.o |
|
| psr1cl.u |
|
| psr1cl.b |
|
| Ref | Expression |
|---|---|
| psr1clfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.r |
. . . . . . 7
| |
| 2 | eqid 2206 |
. . . . . . . 8
| |
| 3 | psr1cl.o |
. . . . . . . 8
| |
| 4 | 2, 3 | ringidcl 13826 |
. . . . . . 7
|
| 5 | 1, 4 | syl 14 |
. . . . . 6
|
| 6 | 5 | adantr 276 |
. . . . 5
|
| 7 | psr1cl.z |
. . . . . . . 8
| |
| 8 | 2, 7 | ring0cl 13827 |
. . . . . . 7
|
| 9 | 1, 8 | syl 14 |
. . . . . 6
|
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | psrringfi.i |
. . . . . . . . 9
| |
| 12 | 0z 9390 |
. . . . . . . . . . 11
| |
| 13 | cnveq 4856 |
. . . . . . . . . . . . . . . . . . 19
| |
| 14 | 13 | imaeq1d 5026 |
. . . . . . . . . . . . . . . . . 18
|
| 15 | 14 | eleq1d 2275 |
. . . . . . . . . . . . . . . . 17
|
| 16 | psr1cl.d |
. . . . . . . . . . . . . . . . 17
| |
| 17 | 15, 16 | elrab2 2933 |
. . . . . . . . . . . . . . . 16
|
| 18 | 17 | simplbi 274 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | adantl 277 |
. . . . . . . . . . . . . 14
|
| 20 | nn0ex 9308 |
. . . . . . . . . . . . . . . 16
| |
| 21 | 20 | a1i 9 |
. . . . . . . . . . . . . . 15
|
| 22 | 11 | adantr 276 |
. . . . . . . . . . . . . . 15
|
| 23 | 21, 22 | elmapd 6756 |
. . . . . . . . . . . . . 14
|
| 24 | 19, 23 | mpbid 147 |
. . . . . . . . . . . . 13
|
| 25 | 24 | ffvelcdmda 5722 |
. . . . . . . . . . . 12
|
| 26 | 25 | nn0zd 9500 |
. . . . . . . . . . 11
|
| 27 | zdceq 9455 |
. . . . . . . . . . 11
| |
| 28 | 12, 26, 27 | sylancr 414 |
. . . . . . . . . 10
|
| 29 | 28 | ralrimiva 2580 |
. . . . . . . . 9
|
| 30 | dcfi 7090 |
. . . . . . . . 9
| |
| 31 | 11, 29, 30 | syl2an2r 595 |
. . . . . . . 8
|
| 32 | 0nn0 9317 |
. . . . . . . . . . 11
| |
| 33 | 32 | rgenw 2562 |
. . . . . . . . . 10
|
| 34 | mpteqb 5677 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . . 9
|
| 36 | 35 | dcbii 842 |
. . . . . . . 8
|
| 37 | 31, 36 | sylibr 134 |
. . . . . . 7
|
| 38 | eqcom 2208 |
. . . . . . . 8
| |
| 39 | 38 | dcbii 842 |
. . . . . . 7
|
| 40 | 37, 39 | sylib 122 |
. . . . . 6
|
| 41 | 24 | feqmptd 5639 |
. . . . . . . 8
|
| 42 | fconstmpt 4726 |
. . . . . . . . 9
| |
| 43 | 42 | a1i 9 |
. . . . . . . 8
|
| 44 | 41, 43 | eqeq12d 2221 |
. . . . . . 7
|
| 45 | 44 | dcbid 840 |
. . . . . 6
|
| 46 | 40, 45 | mpbird 167 |
. . . . 5
|
| 47 | 6, 10, 46 | ifcldcd 3609 |
. . . 4
|
| 48 | psr1cl.u |
. . . 4
| |
| 49 | 47, 48 | fmptd 5741 |
. . 3
|
| 50 | basfn 12934 |
. . . . 5
| |
| 51 | 1 | elexd 2786 |
. . . . 5
|
| 52 | funfvex 5600 |
. . . . . 6
| |
| 53 | 52 | funfni 5381 |
. . . . 5
|
| 54 | 50, 51, 53 | sylancr 414 |
. . . 4
|
| 55 | fnmap 6749 |
. . . . . 6
| |
| 56 | 11 | elexd 2786 |
. . . . . 6
|
| 57 | fnovex 5984 |
. . . . . 6
| |
| 58 | 55, 20, 56, 57 | mp3an12i 1354 |
. . . . 5
|
| 59 | 16, 58 | rabexd 4193 |
. . . 4
|
| 60 | 54, 59 | elmapd 6756 |
. . 3
|
| 61 | 49, 60 | mpbird 167 |
. 2
|
| 62 | psrring.s |
. . 3
| |
| 63 | psr1cl.b |
. . 3
| |
| 64 | 62, 2, 16, 63, 11, 1 | psrbasg 14480 |
. 2
|
| 65 | 61, 64 | eleqtrrd 2286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-er 6627 df-map 6744 df-ixp 6793 df-en 6835 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-tset 12972 df-rest 13117 df-topn 13118 df-0g 13134 df-topgen 13136 df-pt 13137 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-mgp 13727 df-ur 13766 df-ring 13804 df-psr 14469 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |