ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psr1clfi Unicode version

Theorem psr1clfi 14316
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrring.s  |-  S  =  ( I mPwSer  R )
psrringfi.i  |-  ( ph  ->  I  e.  Fin )
psrring.r  |-  ( ph  ->  R  e.  Ring )
psr1cl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psr1cl.z  |-  .0.  =  ( 0g `  R )
psr1cl.o  |-  .1.  =  ( 1r `  R )
psr1cl.u  |-  U  =  ( x  e.  D  |->  if ( x  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
psr1cl.b  |-  B  =  ( Base `  S
)
Assertion
Ref Expression
psr1clfi  |-  ( ph  ->  U  e.  B )
Distinct variable groups:    x, f,  .0.    f, I, x    x, B    R, f, x    x, D    ph, x    x, S    x,  .1.
Allowed substitution hints:    ph( f)    B( f)    D( f)    S( f)    U( x, f)    .1. ( f)

Proof of Theorem psr1clfi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 psrring.r . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
2 eqid 2196 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
3 psr1cl.o . . . . . . . 8  |-  .1.  =  ( 1r `  R )
42, 3ringidcl 13652 . . . . . . 7  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
51, 4syl 14 . . . . . 6  |-  ( ph  ->  .1.  e.  ( Base `  R ) )
65adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  .1.  e.  ( Base `  R
) )
7 psr1cl.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
82, 7ring0cl 13653 . . . . . . 7  |-  ( R  e.  Ring  ->  .0.  e.  ( Base `  R )
)
91, 8syl 14 . . . . . 6  |-  ( ph  ->  .0.  e.  ( Base `  R ) )
109adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  .0.  e.  ( Base `  R
) )
11 psrringfi.i . . . . . . . . 9  |-  ( ph  ->  I  e.  Fin )
12 0z 9354 . . . . . . . . . . 11  |-  0  e.  ZZ
13 cnveq 4841 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  x  ->  `' f  =  `' x
)
1413imaeq1d 5009 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  x  ->  ( `' f " NN )  =  ( `' x " NN ) )
1514eleq1d 2265 . . . . . . . . . . . . . . . . 17  |-  ( f  =  x  ->  (
( `' f " NN )  e.  Fin  <->  ( `' x " NN )  e.  Fin ) )
16 psr1cl.d . . . . . . . . . . . . . . . . 17  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
1715, 16elrab2 2923 . . . . . . . . . . . . . . . 16  |-  ( x  e.  D  <->  ( x  e.  ( NN0  ^m  I
)  /\  ( `' x " NN )  e. 
Fin ) )
1817simplbi 274 . . . . . . . . . . . . . . 15  |-  ( x  e.  D  ->  x  e.  ( NN0  ^m  I
) )
1918adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  ( NN0  ^m  I
) )
20 nn0ex 9272 . . . . . . . . . . . . . . . 16  |-  NN0  e.  _V
2120a1i 9 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  D )  ->  NN0  e.  _V )
2211adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  D )  ->  I  e.  Fin )
2321, 22elmapd 6730 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  D )  ->  (
x  e.  ( NN0 
^m  I )  <->  x :
I --> NN0 ) )
2419, 23mpbid 147 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  D )  ->  x : I --> NN0 )
2524ffvelcdmda 5700 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  D )  /\  z  e.  I )  ->  (
x `  z )  e.  NN0 )
2625nn0zd 9463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  D )  /\  z  e.  I )  ->  (
x `  z )  e.  ZZ )
27 zdceq 9418 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  ( x `  z
)  e.  ZZ )  -> DECID  0  =  ( x `
 z ) )
2812, 26, 27sylancr 414 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  D )  /\  z  e.  I )  -> DECID  0  =  (
x `  z )
)
2928ralrimiva 2570 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  A. z  e.  I DECID  0  =  (
x `  z )
)
30 dcfi 7056 . . . . . . . . 9  |-  ( ( I  e.  Fin  /\  A. z  e.  I DECID  0  =  ( x `  z
) )  -> DECID  A. z  e.  I 
0  =  ( x `
 z ) )
3111, 29, 30syl2an2r 595 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  -> DECID  A. z  e.  I 
0  =  ( x `
 z ) )
32 0nn0 9281 . . . . . . . . . . 11  |-  0  e.  NN0
3332rgenw 2552 . . . . . . . . . 10  |-  A. z  e.  I  0  e.  NN0
34 mpteqb 5655 . . . . . . . . . 10  |-  ( A. z  e.  I  0  e.  NN0  ->  ( (
z  e.  I  |->  0 )  =  ( z  e.  I  |->  ( x `
 z ) )  <->  A. z  e.  I 
0  =  ( x `
 z ) ) )
3533, 34ax-mp 5 . . . . . . . . 9  |-  ( ( z  e.  I  |->  0 )  =  ( z  e.  I  |->  ( x `
 z ) )  <->  A. z  e.  I 
0  =  ( x `
 z ) )
3635dcbii 841 . . . . . . . 8  |-  (DECID  ( z  e.  I  |->  0 )  =  ( z  e.  I  |->  ( x `  z ) )  <-> DECID  A. z  e.  I 
0  =  ( x `
 z ) )
3731, 36sylibr 134 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  -> DECID  ( z  e.  I  |->  0 )  =  ( z  e.  I  |->  ( x `  z ) ) )
38 eqcom 2198 . . . . . . . 8  |-  ( ( z  e.  I  |->  0 )  =  ( z  e.  I  |->  ( x `
 z ) )  <-> 
( z  e.  I  |->  ( x `  z
) )  =  ( z  e.  I  |->  0 ) )
3938dcbii 841 . . . . . . 7  |-  (DECID  ( z  e.  I  |->  0 )  =  ( z  e.  I  |->  ( x `  z ) )  <-> DECID  ( z  e.  I  |->  ( x `  z
) )  =  ( z  e.  I  |->  0 ) )
4037, 39sylib 122 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  -> DECID  ( z  e.  I  |->  ( x `  z
) )  =  ( z  e.  I  |->  0 ) )
4124feqmptd 5617 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  x  =  ( z  e.  I  |->  ( x `  z ) ) )
42 fconstmpt 4711 . . . . . . . . 9  |-  ( I  X.  { 0 } )  =  ( z  e.  I  |->  0 )
4342a1i 9 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
I  X.  { 0 } )  =  ( z  e.  I  |->  0 ) )
4441, 43eqeq12d 2211 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
x  =  ( I  X.  { 0 } )  <->  ( z  e.  I  |->  ( x `  z ) )  =  ( z  e.  I  |->  0 ) ) )
4544dcbid 839 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (DECID  x  =  ( I  X.  { 0 } )  <-> DECID  (
z  e.  I  |->  ( x `  z ) )  =  ( z  e.  I  |->  0 ) ) )
4640, 45mpbird 167 . . . . 5  |-  ( (
ph  /\  x  e.  D )  -> DECID  x  =  (
I  X.  { 0 } ) )
476, 10, 46ifcldcd 3598 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  if ( x  =  (
I  X.  { 0 } ) ,  .1.  ,  .0.  )  e.  (
Base `  R )
)
48 psr1cl.u . . . 4  |-  U  =  ( x  e.  D  |->  if ( x  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
4947, 48fmptd 5719 . . 3  |-  ( ph  ->  U : D --> ( Base `  R ) )
50 basfn 12761 . . . . 5  |-  Base  Fn  _V
511elexd 2776 . . . . 5  |-  ( ph  ->  R  e.  _V )
52 funfvex 5578 . . . . . 6  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
5352funfni 5361 . . . . 5  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
5450, 51, 53sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  R
)  e.  _V )
55 fnmap 6723 . . . . . 6  |-  ^m  Fn  ( _V  X.  _V )
5611elexd 2776 . . . . . 6  |-  ( ph  ->  I  e.  _V )
57 fnovex 5958 . . . . . 6  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  NN0  e.  _V  /\  I  e. 
_V )  ->  ( NN0  ^m  I )  e. 
_V )
5855, 20, 56, 57mp3an12i 1352 . . . . 5  |-  ( ph  ->  ( NN0  ^m  I
)  e.  _V )
5916, 58rabexd 4179 . . . 4  |-  ( ph  ->  D  e.  _V )
6054, 59elmapd 6730 . . 3  |-  ( ph  ->  ( U  e.  ( ( Base `  R
)  ^m  D )  <->  U : D --> ( Base `  R ) ) )
6149, 60mpbird 167 . 2  |-  ( ph  ->  U  e.  ( (
Base `  R )  ^m  D ) )
62 psrring.s . . 3  |-  S  =  ( I mPwSer  R )
63 psr1cl.b . . 3  |-  B  =  ( Base `  S
)
6462, 2, 16, 63, 11, 1psrbasg 14303 . 2  |-  ( ph  ->  B  =  ( (
Base `  R )  ^m  D ) )
6561, 64eleqtrrd 2276 1  |-  ( ph  ->  U  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763   ifcif 3562   {csn 3623    |-> cmpt 4095    X. cxp 4662   `'ccnv 4663   "cima 4667    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925    ^m cmap 6716   Fincfn 6808   0cc0 7896   NNcn 9007   NN0cn0 9266   ZZcz 9343   Basecbs 12703   0gc0g 12958   1rcur 13591   Ringcrg 13628   mPwSer cmps 14293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-er 6601  df-map 6718  df-ixp 6767  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-tset 12799  df-rest 12943  df-topn 12944  df-0g 12960  df-topgen 12962  df-pt 12963  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-mgp 13553  df-ur 13592  df-ring 13630  df-psr 14294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator